El difícil equilibrio entre resolución y sensibilidad en los sensores digitales

Cuando hace unos días me explayaba sobre el tema de la sucesión de la D90 os comenté que en lugar de elevar la resolución del sensor que equipará la nueva cámara preferiría que los ingenieros de Nikon se centraran en potenciar la calidad de imagen y la contención del ruido a sensibilidades elevadas.

Tal vez alguno de vosotros sé esté preguntando por qué no podemos tener las dos cosas, de modo que he pensado en escribir este artículo para tratar de explicaros de una forma sencilla el motivo por el cual a la hora de diseñar el sensor de una cámara digital hay que buscar un compromiso entre resolución y sensibilidad al no ser posible (al menos con los medios actuales) tener ambas cosas a la vez.

Recordando cómo capta la luz el sensor de la cámara

La tienda de Alcalá

En su momento ya hablamos sobre el modo en el que están dispuestos los fotocaptores que conforman la superficie del sensor y que son los encargados de transformar la luz incidente en impulsos eléctricos; así que hoy vamos a hablar a un nivel más general para ver de qué depende la generación de ruido en la imagen final.

Aunque luego se aplicarán algoritmos de reducción de ruido ya sea en la propia cámara o en nuestro programa de edición de imágenes habitual para generar la imagen, vamos a hablar sobre los datos «en bruto» para comprender qué es lo que capta exactamente el sensor y por qué aparece ruido en esos datos.

El ruido en la imagen

La generación del ruido en una u otra cámara empleando la misma sensibilidad ISO depende fundamentalmente del tamaño de los fotocaptores que conforman la superficie del sensor. Parámetro que podemos estudiar mediante la densidad de pixels (vamos a adoptar el criterio de que un fotocaptor es un píxel) por centímetro cuadrado o directamente por el tamaño del mismo expresado en micrómetros (μm); y puesto que creo que es más descriptivo imaginar un cuadrado de un centímetro de lado emplearé la primera forma para hacer las comparaciones necesarias.

Una ducha

Vamos a ver la densidad de fotocaptores en diversos tipos de sensores para luego tratar de explicar de dónde proviene el ruido generado:

  • Sensor Full Frame (36 x 24 mm) de 12 Mpixels: 1.4 MP / cm²
  • Sensor Nikon DX (24 x 16 mm) de 6 Mpixels: 1.6 MP / cm²
  • Sensor Full Frame de 24 Mpixels: 2.8 MP / cm²
  • Sensor Canon APS-C (22 x 15 mm) de 10 Mpixels: 3.1 MP / cm²
  • Sensor Nikon DX de 12 Mpixels: 3.3 MP / cm²
  • Sensor 4/3 (17 x 13 mm) de 12 Mpixels: 5.1 MP / cm²
  • Sensor Canon APS-C de 18 Mpixels: 5.4 MP / cm²
  • Sensor de 1/2.33″ (6.1 x 4.6 mm; habitual en compactas) de 14 Mpixels: 50 MP / cm²

Como veis, la diferencia en el número de pixels embutidos en un centímetro cuadrado puede llegar a ser notable entre unos sensores y otros; y puesto que cuanto más baja sea la densidad de fotocaptores mejores resultados vamos a obtener, no parece una buena idea de cara a la calidad final de la imagen fabricar sensores de pequeño tamaño con una resolución desmesurada (es lo que está ocurriendo con algunas cámaras compactas de reciente aparición). No va a ser lo mismo tener 1.4 millones de fotocaptores en un área del tamaño de la uña del dedo meñique a meter cincuenta millones de ellos en la misma superficie.

Una comparación clarificadora

Podéis imaginar que cada fotocaptor es un pozo en el que se meten los fotones cuando se abre el obturador de la cámara y así la electrónica interna puede saber cuánta luz alcanza la superficie del sensor sin más que contar el número de fotones que han caído en el pozo. Evidentemente, cuanto mayor sea el diámetro de este pozo más fotones se van a introducir en él y más precisa será la medida de la luz así como la fidelidad de la fotografía con respecto a lo que ven nuestros ojos.

Patio trilingüe (VII)

Cuando en la imagen obtenemos un tono negro puro es porque no se ha introducido ni un sólo fotón en el pozo correspondiente, mientras que cuando tenemos una zona de la foto quemada (completamente blanca) es porque los pozos correspondientes han superado su capacidad máxima de guardar fotones y se han «desbordado». Cualquier tono intermedio entre el blanco y el negro viene dado por la cantidad de fotones que han entrado en el pozo durante la exposición de la fotografía.

Por cierto, me gustaría aprovechar para comentaros que este tema fue tratado más en profundidad en el artículo que habla sobre el derecheo del histograma, ya que dicha técnica se basa precisamente en el modo de funcionamiento de los conversores A/D que son, precisamente, los circuitos electrónicos encargados de contar los fotones como os comentaba en el párrafo anterior.

Continuando con la explicación, lo que sucede cuando se cierra el obturador es que se cuentan los fotones de cada pozo y esa cifra pasa a la electrónica de la cámara que mediante otra serie de parámetros (balance de blancos, nitidez, espacio de color…) conformará la imagen final. Si estamos empleando el ISO base de la cámara la cifra se mantiene intacta para calcular los valores de luminosidad en la imagen final, pero si estamos empleando una sensibilidad superior la cifra se multiplicará por el factor correspondiente de tal modo que estaremos amplificando digitalmente la señal digital de la cuenta de los fotones. Si la ISO base de la cámara es 200, usando una sensibilidad de 400 estaremos multiplicando por dos. Si empleamos ISO 3200 estaremos multiplicando por 16…

Puntos

La importancia del tamaño del fotocaptor

Pues bien, imaginad que tenemos una de esas cámaras en las que el tamaño de los fotocaptores es bastante amplio (el mejor caso posible de los que hemos visto antes es un sensor FF de 12 Mpixels). Para seguir con nuestra metáfora vamos a imaginar que en cada uno de esos pozos caben 100 fotones. Del mismo modo, vamos a imaginar que el minúsculo sensor de una compacta de 14 Mpixels se compone de pozos tan pequeños que en cada uno de ellos entra un máximo de 5 fotones. Es evidente que no es lo mismo cubrir una misma superficie de terreno con pocos pozos pero muy amplios (sería el caso de un sensor con una densidad de pixels baja, donde cada pozo sería como una piscina) o con muchos de ellos pero de un tamaño muy reducido (que es lo que sucede con los sensores de pequeño tamaño y mucha resolución, donde los pozos son en realidad cubos).

Como podréis suponer, la precisión a la hora de medir la luz en uno u otro sensor va a ser muy diferente, teniendo un comportamiento mucho más afinado el primero de ellos por su mayor precisión a la hora de medir la luz que ha incidido sobre cada fotocaptor. Pero sobre todo, esa mayor precisión se pone de manifiesto a la hora de subir la sensibilidad, ya que cuanto más precisa sea la medición de la luz incidente, más podremos multiplicar el resultado sin desviarnos de la medida real.

Paseantes de la calle Mayor

De hecho, el ruido no son más que medidas anómalas en algunos de los pozos. Si los fotocaptores tienen un buen tamaño, los errores de medida serán pequeños y por tanto apenas tendremos ruido. Sin embargo, en el caso de fotocaptores de escaso tamaño puede haber errores considerables que se incrementarán notablemente cuanto más amplifiquemos digitalmente la señal.

Una aplicación real de todo lo anterior

Un ejemplo práctico de todo esto que os he contado hoy lo tenéis en lo más alto del actual catálogo de Nikon: a mediados de 2007 la firma japonesa presentó su primera cámara con sensor Full Frame, la D3, que daba muy buen rendimiento a ISOs elevados a costa de contar «sólo» con 12 Mpixels de resolución. Unos meses después Nikon evolucionó la D3 en dos ramas diferentes: por un lado la D3x, que aumentaba la resolución del sensor hasta los 24 Mpixels orientando la cámara hacia el trabajo en estudio (donde la iluminación la controlamos nosotros) y por otra la D3s, que mantiene los 12 Mpixels de la D3 original pero es capaz de emplear unas sensibilidades ISO brutales debido a la optimización del sensor para labores de fotoperiodismo donde no siempre hay suficiente luz como para trabajar a gusto.

Carrusel nocturno

Resumiendo

Si tenemos un sensor con una densidad de pixels muy alta (pequeño tamaño y/o gran resolución) los fotocaptores van a ser de pequeño tamaño y no van a poder captar demasiada luz perdiendo precisión a la hora de digitalizarla. Precisamente debido a estos errores de muestreo es por lo que se va a generar un cierto nivel de ruido que será más visible cuanto más forcemos la sensibilidad del sensor seleccionando un valor ISO superior, ya que lo que estaremos haciendo es amplificar digitalmente esta señal junto con su error asociado.

Debido a que los sensores Full Frame disponen de una superficie que duplica a la de un sensor APS-C, a no ser que cuenten con una resolución brutal, van a tener una densidad de fotocaptores bastante baja que va a garantizar a las cámaras equipados con ellos un comportamiento ejemplar en condiciones de poca luz así como al emplear sensibilidades ISO elevadas.

Fuente de aguadores

Los algoritmos de reducción de ruido así como el avance de la electrónica en general ayudan a que al final del proceso de generación de la imagen el ruido disminuya en mayor o menor grado, pero jamás podremos pedir un buen rendimiento en condiciones de luz deficiente al minúsculo sensor de una compacta en el que se han embutido más de diez millones de fotocaptores sobre una superficie poco mayor que la de cualquiera de las letras que conforman este texto.

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

RGB: ¿Y eso qué es?

Llevo todo el día con el Word dándole caña al proyecto de fin de carrera y como ya me empezaba a salir humo por las orejas y no quería exprimir más mi cerebro he decidido escribir sobre algo sencillo que prácticamente todos conocemos pero que no deja de ser sorprendente: la generación de color en un monitor LCD (aunque el principio es aplicable a todo lo que muestre imágenes en color).Cada píxel de un monitor LCD son en realidad tres puntos: uno rojo (Red) otro verde (Green) y otro azul (Blue). ¿Recordáis cómo mezclábamos las témperas en el colegio para conseguir colores que no teníamos? Pues esto es más o menos lo mismo pero en formato electrónico 😛

Cuando queremos mostrar un color rojo puro encendemos el punto correspondiente a dicho color y apagamos los otros dos. En el caso de querer mostrar un píxel negro simplemente apagaremos los tres, y si lo que queremos es que el pixel sea de color blanco hay que encender los tres colores que lo conforman a su máxima intensidad.

Como os podéis imaginar, todo color diferente al blanco, el negro o uno de los tres primarios se genera mediante la iluminación en diferentes grados de los tres puntos que conforman cada píxel. Si tenemos el monitor configurado en 16 millones de colores es que estamos empleando 24 bits por cada píxel, y dividiendo entre 3 nos sale que para cada componente de color se van a emplear 8 bits.

Con esos 8 bits podemos conseguir 2^8 = 256 valores diferentes, lo que indica que cada punto rojo, verde o azul se va a iluminar con 256 intensidades diferentes, y combinándolos (256^3) vamos a obtener los 16777216 colores diferentes que puede tomar cada píxel del monitor. ¿Me he explicado bien? 😉

Bueno, pues ya que lo que os he contado era algo bastante simple, os dejo ahora con la fotografía que ilustra todo esto y que no es más que un icono de Windows XP que he fotografiado directamente de la pantalla del portátil con mi cámara digital y su modo «Super Macro» el cual cada día me sorprende más.

Como podéis apreciar, podemos ver perfectamente el array de tres colores que conforma cada píxel y cómo (según el color que pretendamos conseguir) se encienden o se apagan unos u otros. Ya sé que parece más bien uno de esos diseños de punto de cruz, pero os aseguro que es una mínima parte de mi monitor en la que a simple vista es imposible distinguir los pequeños puntos que conforman cada píxel y que gracias a la capacidad del modo macro de las cámaras se nos revela como algo realmente curioso ante nuestro ojos.

La magia de las pequeñas cosas.