Nunca publiquéis en Internet una foto de vuestras llaves

No sé si es que yo soy demasiado precavido o que hay gente que tiene mucha confianza en la bondad del ser humano; pero el caso es que a mí jamás se me ocurría colgar una foto de mis llaves en Internet.

Lo que define a una llave son dos cosas: el modelo y su dentado. Si dos llaves son de modelos diferentes sencillamente una no encajará en la cerradura de la otra; pero si las dos pertenecen al mismo modelo lo único que las diferenciará es el relieve de las mismas, que teóricamente es único para cada cerradura debido a su principio de funcionamiento que podréis ver con claridad en la siguiente animación:

Pues bien, debido a la elevada resolución de las cámaras actuales y que gracias a la “globalidad” de Internet es posible que alguien pueda saber dónde vivimos, la acción de colocar a la vista de cualquiera una imagen de las llaves de nuestra casa es poco menos que una temeridad. Me explico:

Una simple búsqueda en Flickr de las palabras “key” o “llave” devuelve cientos de resultados entre los que hay unas cuantas imágenes en las que se distingue la forma de alguna llave con una claridad asombrosa. Y claro, ya os estaréis imaginando que si una persona conoce vuestra dirección postal, tiene en su poder una de esas fotografías y sabe manejar una copiadora de llaves no le resultará excesivamente complicado clonar ese pequeño trozo de metal que da acceso a vuestra vivienda.

Llaves

Fotografía publicada por el usuario kenwood en Flickr

Poco importa que la llave se vea desde un lateral o desde cualquier otro punto de vista porque mientras se distingan sus dientes, con un algoritmo de corrección de perspectiva (como el que incorpora cualquier programa de retoque fotográfico) el proceso de recomponer un perfil a partir de una vista oblicua es algo completamente trivial tal y como podéis apreciar en el siguiente ejemplo que os he preparado en apenas unos segundos:

Refresco

Por supuesto, no pretendo alarmaros con esto y, de hecho, si me conocéis un poco sabréis que siempre intento dar a conocer este tipo de cosas porque creo que lo mejor para ir tranquilo por la vida es estar informado. Sin embargo, si tenéis colgada por ahí alguna imagen en la que se distingan con claridad vuestras llaves (tal vez para mostrar un llavero que os hayan regalado) yo particularmente os recomiendo que la retiréis o que al menos añadáis un rectángulo opaco sobre el filo de la llave para evitar posibles disgustos porque, como dice un conocido refrán, más vale prevenir que curar.

Interruptores magnetotérmicos y diferenciales

Por diversos motivos estoy acostumbrado a tratar con diversos dispositivos eléctricos y electrónicos; y precisamente por eso uno puede perder un poco la noción de las cosas y creer que todo el mundo tiene ciertos conocimientos sobre estos temas.

Sin embargo, el otro día me di cuenta mientras hablaba con mis padres de que hay mucha gente a la que le suena eso del magnetotérmico y el diferencial, pero sólo sabe que son unas teclas que están en el cuadro eléctrico de la entrada de la vivienda y poco más.

Tras aquella charla en la que con un par de esquemas y unas breves explicaciones parece que les quedó claro para qué sirve cada cosa, se me ocurrió escribir esta entrada de modo que entendáis lo que es un interruptor magnetotérmico y un interruptor diferencial sin meterme en detalles técnicos; pues aunque se instalan juntos su función es completamente diferente y creo que son unos conceptos que pueden ser de utilidad a cualquier persona.

Un par de apuntes sobre electricidad

La electricidad es la energía que hace funcionar a la práctica totalidad de los aparatos que tenemos en casa y viene definida por dos magnitudes principales: la tensión y la intensidad. Obviamente hay muchas más, pero para lo que a nosotros nos interesa nos basta con estas que os comento.

rayos (2)

La tensión es la diferencia de potencial que existe entre dos polos o entre el hilo neutro y uno de los polos (dependiendo del tipo de instalación) y se mide en Voltios. Si medimos la tensión existente entre las bornas de cualquiera de los enchufes de nuestra casa obtendremos 220 V, que es la tensión a la que funcionan todos los aparatos domésticos en España.

Por su parte, la intensidad es la medida de la cantidad de corriente eléctrica que está pasando por un cable y viene dada en amperios (A). La corriente eléctrica no es más que un flujo de electrones que se desplazan por un conductor, y la medida de la intensidad cuantifica ese movimiento.

Si lo queréis ver con un símil podemos imaginar la corriente eléctrica como el torrente de un río: la tensión podría ser el equivalente al ancho del mismo, mientras que la corriente sería la cantidad de agua que pasa por su cauce. La combinación de ambas nos daría un determinado caudal, que en electricidad sería la potencia eléctrica (que es el producto de la tensión por la corriente).

Para obtener una misma potencia eléctrica podemos tener un río estrecho pero por el que circule mucha agua o bien uno más ancho pero por el que circule menos agua. En electricidad ocurre lo mismo: para obtener una determinada potencia eléctrica podemos tener una tensión alta y una corriente baja o bien una tensión de pocos voltios pero una corriente eléctrica muy alta.

El pausado discurrir del Henares

En todo caso, aunque la similitud de conceptos entre caudal de agua y corriente eléctrica es acertado, no es tan fiel a la realidad como me gustaría porque la electricidad necesita un circuito cerrado para circular. Es decir, que la corriente sale del enchufe por uno de sus polos, llega hasta la carga (el aparato eléctrico de turno) y regresa por el otro cable para salir por el polo contrario a diferencia del agua del río, que parte de un punto A y llega hasta un punto B sin posibilidad de retorno.

Pero centrándonos en el tema principal del artículo, os indicaré que puesto que en la inmensa mayoría de las instalaciones la tensión permanece constante y con lo que se “juega” es con la intensidad eléctrica, los dos sistemas de protección que vamos a ver en este artículo van a estar basados en esta magnitud eléctrica:

Interruptor magnetotérmico

El interruptor magnetotérmico es un dispositivo diseñado para proteger la instalación eléctrica (y los aparatos conectados a ella) tanto de sobrecargas como de cortocircuitos conectándose en el cuadro eléctrico de entrada a la vivienda. En realidad suele haber varios de ellos, ya que por lo general la distribución eléctrica de la vivienda se realiza en varias líneas, necesitando un interruptor de este tipo para cada una de ellas.

Los magnetotérmicos, como su propio nombre indica, poseen dos sistemas de protección ante el paso de corriente: uno de tipo magnético y otro de tipo térmico.

Protección magnética

El magnético se basa en una bobina que, colocada en serie con la corriente, no se activa a no ser que circule por ella una intensidad varias veces superior a la nominal (habitualmente entre 5 y 10 veces para instalaciones domésticas). Este margen se da para que el magnetotérmico no se dispare durante los arranques de ciertos aparatos con motores potentes (aspiradoras, lavavajillas…) porque suelen meter unos picos de corriente bastante elevados en el preciso momento de su puesta en marcha.

La protección magnética sirve para proteger la instalación ante cortocircuitos (contacto directo entre dos conductores de la instalación), ya que cuando tiene lugar uno de ellos la intensidad aumenta de forma brutal (en teoría se hace infinita) y la bobina a la que me refería antes entra en acción instantáneamente abriendo el circuito y cortando, por tanto, el paso de la corriente eléctrica.

Osciloscopio nocturno

Protección térmica

Por su parte, la protección térmica está encaminada sobre todo a proteger el cableado de la instalación, ya que se trata de una lámina bimetálica que se curvará en mayor o menor medida en función de la cantidad de corriente que circule por ella. Esto es debido a que cuando por un conductor circula una corriente éste se calentará en función de la intensidad, de modo que si esta se mantiene durante unos instantes por encima de la nominal que soporta el interruptor, la lámina bimetálica se curvará más de la cuenta y abrirá el circuito eléctrico evitando que una corriente demasiado elevada pueda quemar los cables de la instalación eléctrica.

El sistema de protección térmica va a dispararse en aquellos casos en los que estamos sobrepasando el consumo máximo de la instalación eléctrica y para el cual han sido dimensionados los cables. Un caso típico de esto es cuando empezamos a poner en marcha varios electrodomésticos de cierto consumo (secador de pelo, aire acondicionado, vitrocerámica, microondas…) y en un momento determinado comprobamos que “se ha ido la luz”.

Cuando se dispara cualquiera de las dos protecciones que hay en un magnetotérmico debemos de corregir la situación que ha propiciado su activación y a continuación subir la palanca que posee para así rearmar el circuito. En caso de que la situación que ha provocado su disparo no se haya subsanado como medida de seguridad no será posible rearmar el automático por mucho que lo intentemos.

Dibujando en el aire

Por cierto, si os acercáis al cuadro eléctrico de casa veréis que los interruptores magnetotérmicos son de un tamaño bastante pequeño (poco más que una caja de cerillas, como el que podéis ver al principio de esta sección) y suelen estar calibrados, por lo general, para corrientes de entre 6 y 25 A dependiendo del diseño de la red eléctrica.

Sin embargo, a modo de curiosidad, os puedo decir que el otro día tuve en la mano un magnetotérmico industrial de 250 A perteneciente y su tamaño es similar al de un tetra-brick de litro (y del peso ni hablamos, claro). Si tenemos en cuenta que ese interruptor que os digo es pequeño en comparación con los que os podéis encontrar en los sistemas de iluminación de aeropuertos y cosas así, os daréis cuenta de que lo que tenemos en casa es prácticamente de juguete.

Interruptor diferencial

El diferencial tiene como misión evitar que una persona que toque un conductor de la instalación se pueda quedar electrocutada por conducir la electricidad a través de su cuerpo; y de ahí que sea un componente vital en cualquier instalación eléctrica para garantizar la seguridad de las personas que la utilicen.

Como os decía anteriormente, para que la corriente eléctrica pueda circular es necesario cerrar el circuito por el que transita, y si por lo que sea tocamos un cable eléctrico sin estar aislados del suelo, nuestro propio cuerpo va a hacer de “cable” llevando la electricidad a tierra con el riesgo de electrocución que esto conlleva.

Los diferenciales se basan en un principio muy simple y es que la intensidad que entra por uno de los cables de un circuito eléctrico es igual a la que sale por el otro tal y como muestra el siguiente esquema:

Dentro del diferencial hay una toroidal que se encarga de monitorizar constantemente tanto la corriente de entrada como la de salida. Por tanto, en caso de que esas corrientes no tengan el mismo valor es que se está derivando directamente a tierra por algún sitio (posiblemente a través de una persona que ha tocado una parte de la carga mal aislada) y como medida de seguridad el interruptor se abre cortando la corriente. Esta sería la situación representada por la siguiente figura:

Para instalaciones domésticas se suelen emplear diferenciales de 30 mA y 25 mseg con objeto de garantizar la seguridad de las personas, ya que cualquier derivación a tierra provocará el disparo casi instantáneo del interruptor. En caso de instalaciones industriales se suelen emplear valores más elevados (sensibilidades de 300 mA o incluso algo más para los diferenciales más generales) porque al haber tantos elementos puede darse el caso de que algunos de ellas tengan pequeñas derivaciones a tierra sin que ello suponga un riesgo para la seguridad y evitando así que el diferencial esté saltando cada poco tiempo con los problemas que esto acarrearía.

Lo más importante de un diferencial es pulsar de vez en cuando (hay fabricantes que recomiendan hacerlo mensualmente, mientras que otros indican una frecuencia anual) el botón Test que todos poseen en su frontal. Al presionarlo el interruptor diferencial debería de dispararse instantáneamente demostrando que el dispositivo funciona a la perfección y dándonos la seguridad de que en caso de sufrir una descarga eléctrica estaremos debidamente protegidos frente a sus nefastas consecuencias. Cuando el diferencial se dispara hay que rearmarlo manualmente igual que hacíamos con los magnetotérmicos; pero un disparo no provocado del diferencial representa un problema grave, por lo que se recomienda revisar la instalación eléctrica para evitar riesgos.

La seguridad es lo primero

Como os comentaba al principio de este artículo, mucha gente sabe de la existencia de estos dispositivos de protección pero no tiene demasiado claro para qué sirven. Precisamente por ese desconocimiento es por lo que hay incluso algunas personas que ante repetidos disparos llega al extremo de puentearlos para que así no vuelva a “irse la luz”.

Después de haber leído estos párrafos sobre el funcionamiento y la razón de ser de estas protecciones que todos tenemos en casa os imaginaréis que hacer algo así es una auténtica locura; pero aun así os aseguro que hay bastante gente que cada vez que cambia una bombilla se juega la vida porque en caso de tener el diferencial “trucado” lo que sería un simple chispazo se convertiría en una descarga continuada que puede llevar a esa persona incluso a la muerte.

A la electricidad no hay que tenerle miedo porque es una forma de energía muy segura siempre y cuando se cumplan todas las medidas de protección estipuladas. Y si con este artículo he conseguido haceros entender qué son esas palanquitas que hay en el cuadro eléctrico de vuestra casa me doy por satisfecho porque sé que la próxima vez que se os vaya la luz tendréis claro qué es lo que ha propiciado esa situación y trataréis de evitarlo en el futuro.

Funcionamiento del obturador en una cámara réflex

El obturador de una cámara réflex es una compleja obra de ingeniería que resuelve más problemas de los que a priori podríamos imaginar. Crear un dispositivo que se abra y se cierre para dejar pasar la luz es algo que puede parecer sencillo, pero a medida que vamos pensando en los posibles inconvenientes que pueden aparecer durante su fase de diseño nos vamos a dar cuenta de que no es algo tan simple como podríamos suponer en un principio.

shutter_eos-1n

Ya sabemos que el diafragma del objetivo es el encargado de regular la cantidad de luz que llega al sensor mediante su apertura; mientras que el obturador será el que regulará el tiempo durante el cual la luz alcanza al sensor. Un tiempo que en ocasiones será bastante largo (del orden de segundos) y que en otras durará menos de una milésima de segundo.

Precisamente, de esa necesaria rapidez viene uno de los primeros inconvenientes a la hora de diseñar un obturador: si queremos tiempos de disparo muy breves necesitamos que el obturador se mueva realmente rápido, por lo que éste ha de ser muy ligero para que tenga la mínima inercia posible.

Los obturadores, en general, se fabrican en materiales como la fibra de carbono, el aluminio, el kevlar… de tal modo que si nos ahorran una décima de gramo estaremos ganando en prestaciones a la hora de disparar a toda velocidad. Sin embargo, no vamos a poder hacer fotografías a velocidades de obturación realmente elevadas ni siquiera fabricándolo con los materiales más ligeros porque no dejaría de ser un dispositivo mecánico que se ha de desplazar en dos direcciones en un movimiento de vaivén. Para comprender mejor la problemática asociada, vamos a, imaginar el caso de un obturador que tarde apenas una milésima de segundo en bajar y otra en subir (pensad en una persiana, pues el concepto sería similar).

ventana-con-persiana

Si subimos y bajamos esa “persiana”, nos vamos a encontrar con que la parte inferior del sensor va a estar expuesta dos milésimas de segundo más que la parte superior (vamos a imaginar que el obturador primero sube para exponer el sensor y luego baja). Si nuestra fotografía precisa de una exposición de, por ejemplo, dos segundos, la parte inferior del sensor va a estar expuesta a la luz un total de 2002 milésimas y la superior 2000; no habría excesivo problema, aunque ya existiría una pequeña modificación en la luminosidad de la fotografía por la diferencia de tiempos.

Sin embargo, si nos vamos al caso de una toma con un tiempo de exposición de sólo media milésima de segundo (1/2000) vamos a tener el problema de que la parte inferior del sensor va a estar expuesta durante 2,5 milésimas de segundo y la parte superior durante sólo esa media milésima, lo que daría lugar a una fotografía que gradualmente estará cinco veces más clara en la parte inferior que en la superior.

Para solventar esto, lo que se hace es emplear obturadores consistentes en dos cortinillas (una cortinilla es una lámina muy delgada de los materiales que os comentaba antes), de tal modo que ambas realizan su recorrido en la misma dirección: en reposo hay una primera cortinilla tapando el sensor y una segunda escondida por encima de él. En el momento de presionar el disparador, cae la primera cortinilla exponiendo el sensor, y una vez transcurrido el tiempo de exposición necesario baja la segunda a la misma velocidad que la primera quedándose delante del sensor y volviendo a impedir la llega de la luz a su superficie, pasando en ese momento a grabar los datos de la fotografía en el buffer de la cámara y posteriormente en la tarjeta de memoria.

Si volvemos a nuestros dos ejemplos anteriores veréis que en el caso de la exposición larga primero cae una cortinilla y tras un par de segundos cae la segunda; sin más. En el caso de la fotografía realizada a alta velocidad, las dos cortinillas irán “persiguiéndose” de tal modo que van a ir exponiendo todos los puntos del sensor exactamente durante media milésima de segundo mediante la banda luminosa creada por las dos cortinillas del obturador.

shutter len

Exposición lenta en la que las cortinillas se mueven por orden

shutter rap

Exposición rápida en la que ambas cortinillas bajan "persiguiéndose"

En cualquier caso, una vez terminado el proceso las cortinillas vuelven a su lugar original dejando la cámara preparada para un nuevo disparo. Si recordáis el principio básico de funcionamiento de una cámara réflex, os comentaré que cuando disparamos en ráfaga la exposición del sensor se produce durante el tiempo que el espejo está levantado y que cuando éste baja es cuando las cortinillas vuelven a su posición original (os recomiendo ver el vídeo grabado con cámara hiperlenta para apreciar todo el proceso con detalle).

Solventado lo de la velocidad de exposición tenemos un nuevo problema: el flash. Si en una fotografía disparada a alta velocidad empleáramos el flash, puesto que su destello es brevísimo se estamparía una franja luminosa en el sensor durante la bajada de las cortinillas del obturador. Para evitar este problema, se suele limitar la velocidad de disparo de la cámara al emplear el flash de tal modo que por encima de la cual se impida su uso. En el caso de mi D40 (la réflex digital más básica del catálogo de Nikon) esa velocidad límite es de 1/500; y es curioso, porque en el resto de modelos esta velocidad no va más allá de 1/200 o 1/250 en el mejor de los casos. A esa velocidad (o inferiores) habrá un momento durante el cual todo el sensor estará expuesto a la luz, que será el aprovechado por el flash para dispararse, quedando la fotografía uniformemente iluminada.

De todos modos, y como norma general, este límite de velocidad se aplica a los flashes integrados en la cámara, pues con los externos de tipo profesional existen “trucos” para emplearlos a cualquier velocidad sin problemas (los más de 400 euros que cuesta un Nikon SB-900 están más que justificados porque sus prestaciones y las posibilidades creativas que da son impresionantes). No obstante, hablaremos un poco más de los flashes y una de sus principales aplicaciones prácticas.

SB900_D700_frt34r

Flash SB-900 montado en una Nikon D700 ¡Es enorme!

Evidentemente esta explicación es un poco “para andar por casa”, ya que hay más parámetros y más factores que influyen en el diseño del obturador de una cámara réflex (además, aparte del método de las cortinillas también se suelen emplear medios electrónicos para controlar el tiempo de exposición); pero para hacernos una idea de los conceptos más importantes que condicionan su funcionamiento creo que es suficiente.

Me encantan estos problemas a los que los ingenieros se enfrentan a la hora de diseñar cualquier cosa y que siempre resuelven con brillantez. Y es que, en mi opinión, el desarrollo de la mentalidad necesaria para salir de este tipo de atolladeros es lo que se debería potenciar en las escuelas técnicas por encima de complejos teoremas que nunca se utilizan o kilométricas fórmulas matemáticas.

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

¿Cómo funciona el autofocus en las cámaras réflex?

El autofocus es un sistema aparecido en la década de los 80 que sustituyó (o más bien complementó) al enfoque manual en las cámaras fotográficas. Un avance importante que permitió al fotógrafo delegar esa tarea a un automatismo presente en el cuerpo de la cámara, por lo que se ganaba un tiempo importante en fotografía de acción donde cada décima de segundo cuenta para conseguir la mejor imagen posible.

Enfoque por detección de fase

El enfoque por detección de fase ha sido hasta hace poco el método empleado en la práctica totalidad de las cámaras réflex equipadas con autofocus. Este enfoque se basa en la propia imagen que se capta a través del objetivo y llega hasta nuestros ojos mediante el visor de la cámara. Ahora bien, si en una cámara réflex la imagen que entra por el objetivo se refleja en un espejo y llega directamente hasta nuestros ojos, ¿cómo hace la cámara para enfocar cuando presionamos hasta la mitad el disparador?

shutter-button

Yo también me preguntaba esto mismo hasta que un día decidí indagar un poco por mi cuenta, descubriendo que la solución es más sencilla de lo que pensaba: el espejo que desvía la luz entrante en la cámara por el objetivo hacia el ocular mientras componemos la fotografía no refleja la imagen al 100%; sino que deja pasar a través de él un pequeño porcentaje suficiente para “ver” lo que queremos fotografiar mediante un sensor dedicado situado detrás de él.

Nikon-DSLR-Chart

A grandes rasgos, el funcionamiento de este tipo de enfoque se basa en que mediante un sistema óptico la luz incidente sobre el sensor de enfoque en realidad se divide previamente en dos haces; y en función de la posición en la que se proyecten sobre dicho sensor se determina el punto de enfoque de la escena para que la cámara ajuste las lentes del objetivo en consecuencia.

Enfoque por contraste

En las cámaras réflex que emplean el sistema Live View así como en las compactas, el enfoque se realiza por contraste directamente sobre el sensor principal de la cámara; es decir, comparando los píxeles de una pequeña zona de la imagen y variando el enfoque del objetivo hasta que consigue la máxima diferencia de color entre unos y otros. Se trata de un concepto más sencillo que el anterior y que entenderéis mejor con un par de imágenes que bien podría representar el área a analizar por el sistema de autofocus:

desenfocado

enfocado

Si la fotografía no está enfocada (como en el primer caso) la imagen resulta borrosa y por lo tanto los colores estarán entremezclados. La cámara entonces irá variando el enfoque y considerará que el motivo está enfocado cuando la diferencia de tonalidades entre los píxeles sea máxima (el caso de la segunda imagen).

Sabiendo esto entenderéis por qué en las instrucciones siempre se advierte que el enfoque automático no funcionará bien en un área de color liso, con muchos puntos brillantes o en completa oscuridad. Si el sensor encargado del enfoque no es capaz de distinguir entre un píxel y sus adyacentes será incapaz de realizar su trabajo.

Esto es el funcionamiento del autofocus visto a grandes rasgos. Luego ya entraría en juego el que la cámara puede tener varias zonas de enfoque, que algunas de ellas están orientadas en forma vertical, otras en horizontal y otras en ambos sentidos, que a veces hay un sistema de iluminación para ayudar al enfoque en condiciones de oscuridad… pero todo esto ya son variaciones sobre el mismo tema.

d2h_illustration_sm

Una vez visto resulta sencillo, pero cuando no sabía cómo funcionaba el sistema de autofocus en las réflex le estuve dando bastantes vueltas al tema pensando dónde estaría “escondido” el sensor encargado de esta función para no interferir en la imagen que vemos a través del visor durante el enfoque.

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

Funcionamiento del sensor y valores ISO

Me gustaría tratar en este artículo dos conceptos muy relacionados entre si: el principio de funcionamiento del sensor de una cámara y la variación de la sensibilidad ISO. Vais a ver que algo como cambiar el valor ISO antes de tomar una fotografía no es más que actuar sobre la señal digital generada por el propio sensor, así que lo mejor es que comencemos a ver cómo se transforma la luz en señales eléctricas para repasar luego cómo trata la electrónica de la cámara dichas señales.

¿En qué se basa el sensor de una cámara digital?

sensord2x

El sensor de una cámara digital está formado por una matriz de fotocaptores, que son unos componentes electrónicos que reaccionan ante la luz dando a su salida una señal eléctrica proporcional a la intensidad lumínica que incide sobre ellos. Cada uno de estos fotocaptores reacciona ante un color primario (rojo, verde o azul), por lo que cada píxel de una fotografía es “pintado” por tres de estos componentes (aunque en realidad son cuatro porque el verde se repite debido a la estructura del patron Bayer).

La imagen que tenéis a continuación sería una pequeña porción de la superficie de un sensor vista al microscopio; siendo cada una de esas “burbujas” un píxel.

photodiode

Claro, en el diagrama vemos que cada píxel sólo reacciona ante uno de los tres colores anteriormente mencionados, así que… ¿cómo se determina la mezcla de colores que define el tono final de cada punto de la imagen?

Aquí es donde entra en acción el famoso patron Bayer, que no es más que una interpolación de los valores de los píxels con sus adyacentes para, mediente complejas fórmulas matemáticas, hacer un promedio con el que averiguar el color de cada píxel que forma la imagen.

Con el siguiente corte lateral os podréis hacer una idea de cómo capta la imagen el sensor de la cámara: la luz atraviesa unas minúsculas lentes para concentrarla sobre la superficie de cada uno de los fotocaptores de cada píxel (se diferencian mediante los filtros cromáticos que hay en ellos) y al llegar a lo que es el fotodiodo como tal (la parte de electrónica interna de cada fotocaptor) se convierte en un impulso eléctrico que interpretará el circuito electrónico de la cámara.

Microlenses

Pues bien, lo que llamamos sensibilidad ISO no es más que una medida de la capacidad del sensor de la cámara para captar la luz (hace años indicaba la sensibilidad de los carretes, así que el concepto sigue siendo el mismo). Los sensores digitales tienen una sensibilidad base única (ISO 200 en la mayoría de las réflex Nikon) y partir de ella se ponen a disposición del fotógrafo múltiplos y divisores para ayudarle a adaptarse de la mejor manera posible a la iluminación existente ya que, a diferencia del carrete, podemos cambiar ese valor en cada fotografía que vayamos a disparar.

A grandes rasgos, cuanto más alto es el valor ISO más sensibilidad va a mostrar la cámara. Si, por ejemplo, pasamos de ISO 200 a ISO 400 la cámara va a ser el doble de sensible ante la luz, por lo que podremos disparar la fotografía con una velocidad el doble de rápida que la original para congelar el movimiento o bien cerrar un paso el diafragma (un paso significa una diferencia del doble o la mitad en la cantidad de luz) empleando la misma velocidad que en la fotografía a ISO 200, permitiéndonos obtener una mayor profundidad de campo. Hay multitud de combinaciones en función del efecto que queramos obtener en la fotografía; pero todo se basa en jugar con los cuatro principios básicos de la fotografía digital.

ISO por encima del valor base

La playa de noche

Al seleccionar un valor ISO por encima del base estamos amplificando la señal que sale de cada fotocaptor; y más cuanto más alto sea el ISO seleccionado. Suponiendo un ISO base de 200, al seleccionar 400 estamos amplificando la señal por dos, con ISO 1600 la amplificamos cuatro veces… y así sucesivamente.

Obviamente de la nada, nada se saca (como decía un profesor de mi colegio al referirse a los alumnos más vagos) por lo que esa amplificación de la señal conllevará una cierta pérdida de calidad debida a que el paso de analógico (mundo real) a digital (sensor) lleva aparejado un cierto error que, aunque sea muy pequeño, también es amplificado junto con el resto de la señal, por lo que a ganancias elevadas éste empieza a ser visible. Vamos a ver esto mismo con un ejemplo un poco más tangible:

Imaginad que tenemos una grabación de voz en la que hay un siseo de fondo que representa solamente un 1% de lo que se escucha por los altavoces. El ruido será tan bajo que va a ser indistinguible incluso cuando estemos callados; pero si amplificamos la grabación ocho veces, la relación entre la señal y el ruido no va a cambiar (seguirá siendo un 1% de lo que se escucha) pero cuando estemos callados el siseo va a escucharse ocho veces más alto que en la grabación original, por lo que en este caso será claramente distinguible.

Más o menos así es como se justifica lo que os explicaba el otro día sobre que el ruido de una fotografía se aprecia sobre todo en las zonas oscuras de la misma (serían como los silencios en nuestra grabación) por lo que tratando que la imagen quede expuesta de una forma uniforme y luminosa, el ruido no debería ser un gran problema aunque estemos empleando valores ISO elevados.

ISO por debajo del valor base

Parábolas

Por su parte, también pueden existir valores ISO inferiores al de base (para permitirnos tiempos de exposición más o menos largos en condiciones de mucha luz o la posibilidad de abrir mucho el diafragma); algo que se lograría atenuando la señal procedente de los fotocaptores. Si a partir de un ISO base 200, atenuamos la señal a la mitad tendremos un ISO 100; y si la atenuamos a una cuarta parte obtendremos un ISO 50.

De cualquier modo, como en cualquier proceso realizado sobre una señal digital codificada, va a haber una cierta pérdida de calidad que, si bien no va a ser tan evidente como en el caso de la amplificación, viene a decirnos que si queremos obtener la mejor calidad de imagen (para un trabajo de estudio o para fotografías “tranquilas” y en condiciones luminosas adecuadas) lo ideal sería emplear el ISO base de la cámara.

Cuando mi amigo Joe pasó directamente de una cámara analógica a una réflex digital, lo que más le gustó (casi más que el hecho de poder ver los resultados inmediatamente en pantalla) fue la posibilidad de variar el valor ISO a voluntad y de manera instantánea; pues en las cámaras de carrete no te quedaba más remedio que aguantar con la misma sensibilidad durante todos los fotogramas del rollo aunque a una foto nocturna le siguiera al día siguiente otra a pleno sol.

Pato, pico, pluma

Bueno, ahora ya sabéis todo lo que estáis desencadenando en la electrónica de vuestra cámara cada vez que hacéis algo tan sencillo como cambiar el valor ISO antes de disparar una fotografía. ¿Os imaginabais que ocurrían tantas cosas ahí dentro?  😉

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

Cómo funciona una cámara réflex

Desde que comencé esta serie de artículos técnicos sobre el mundo de la fotografía me he centrado sobre todo en cámaras réflex. Es cierto que los conceptos universales de la fotografía como la profundidad de campo o la apertura son aplicables a cualquier tipo de cámara, pero en cualquier caso creo que el mejor modo de aprender a fotografiar lo que nos rodea es empleando una réflex porque nos va a permitir controlar absolutamente todos los parámetros que dan lugar a la imagen final.

Nikon D40 + Nikkor 50mm 1.8D

UN POCO DE HISTORIA

Tal vez alguien se puede estar preguntando a estas alturas qué es una cámara réflex, ya que es un término que he escrito decenas de veces hasta ahora pero que nunca me he encargado de definir. Pues bien, para poneros un poco en antecedentes, os comentaré que a las cámaras réflex también se les denomina con las siglas SLR de “Single Lens Reflex”, que significa cámara réflex de un sólo objetivo. Esto las distingue de las cámaras de la primera mitad del siglo XX que contaban con dos objetivos idénticos (uno para componer la imagen y otro para realizar la fotografía como tal) denominadas “Twin Lens Reflex” o sencillamente TLR. Un ejemplo mítico de estas cámaras de dos objetivos son las Rolleiflex, que hoy en día son auténticas piezas de coleccionismo.

Rollei_Rolleiflex_2.8F

Pero centrándonos en lo que nos interesa, que son las cámaras réflex tal y como las conocemos hoy en día, esta denominación proviene de que este tipo de cámaras poseen un espejo móvil interno que refleja la luz que entra por el objetivo llevándola al visor o al sensor según si estamos componiendo la imagen o disparando la fotografía propiamente dicha. Y poco importa la marca de la cámara, pues este principio de funcionamiento es prácticamente igual para todas las que hay disponibles en el mercado desde que en el año 1959 Nikon sacó su modelo F al tiempo que Canon hacía lo propio con la Canonflex; señal de que es un método fiable y bastante optimizado (si los ingenieros no lo mejoran es porque sencillamente no se puede hacer a un coste razonable).

Como podéis ver, el concepto réflex no nace con las cámaras digitales, sino que proviene de la época del carrete. En las réflex digitales lo único que se ha hecho es sustituir el negativo sobre el que se impresionaba la imagen por un sensor capaz de captar la luz que llega hasta su superficie; pero la estructura y funcionamiento de las cámaras sigue siendo tan similar que, por lo general, podemos seguir empleando los objetivos que teníamos de nuestras antiguas réflex analógicas (siempre que sea entre componentes de la  misma marca, claro).

DIAGRAMA DE FUNCIONAMIENTO

SLR_cross_section

Diagrama extraído de Wikipedia.org

Partes del sistema:

1. Conjunto de lentes del objetivo

2. Espejo abatible colocado a 45º si estamos componiendo la imagen y que sube a la hora de disparar

3. Obturador que se abre durante el tiempo de exposición de la fotografía

4. Sensor (o película en caso de cámaras analógicas)

5. Pantalla de enfoque en la que aparecen los diversos indicadores que vemos en el visor

6. Lente encargada de disminuir el tamaño de la imagen para adaptarla al visor

7. Pentaprisma (o pentaespejo) que refleja en sus caras la imagen que viene del espejo para llevarla al visor

8. Visor por el que miramos para componer la fotografía

PRINCIPIO DE FUNCIONAMIENTO

Como os decía, el pilar básico de una cámara réflex es el espejo que bascula a la hora de disparar la fotografía y que será el encargado de “marcar” uno de los dos caminos que puede seguir la luz en el interior de la cámara. La luz entra en todo momento por el objetivo de la cámara, pero mientras no estemos tomando la imagen, el espejo que está delante del obturador tendrá una inclinación de 45º que desviará la imagen al pentaprisma y posteriormente al visor donde ponemos el ojo para componer la imagen (es el camino de color amarillo mostrado en el diagrama). En dicho visor también tendremos una serie de indicadores visuales que nos darán la velocidad de exposición, el punto de enfoque, la apertura…

A la hora de tomar la fotografía, el espejo se levanta (por lo tanto dejará de haber imagen en el visor) y deja pasar la luz hasta el sensor de la cámara. En todo caso, la luz tomará uno de estos dos caminos, pero nunca los dos al mismo tiempo. Eso sí, me gustaría dejar claro que todo esto que os comento está pensado para las réflex “clásicas”, pues hoy en día los modelos que están apareciendo en el mercado incorporan la función live view, que consiste en que podemos emplear la pantalla de la cámara para componer la fotografía como si de una compacta se tratara. De ese tema hablaremos otro día, ¿OK?  😉

Las dos siguientes imágenes (extraídas de www.dpreview.com) ilustran la montura de una Nikon D700 sin ningún objetivo. En el primer caso se puede ver el espejo de la cámara y en el segundo el sensor mientras se está tomando la fotografía (el espejo está levantado y lo que entra por el objetivo se proyectaría sobre el sensor como os mostré en una entrada reciente). Por lo tanto, la primera imagen corresponde a la composición de la fotografía porque estaremos viendo a través del objetivo mediante el visor gracias a que el espejo “manda hacia arriba” la imagen y la segunda corresponde a la captura de la fotografía propiamente dicha, pues el espejo está levantado y la luz llega directamente hasta el sensor.

lensmount2

lensmount1

EL PROCESO VISTO EN MOVIMIENTO

Durante el preciso instante en el que realizamos la fotografía, en apenas unas milésimas de segundo ocurre un “baile” en el interior de la cámara consistente en que el espejo sube hasta ponerse horizontal, el diafragma del objetivo se cierra a la apertura seleccionada, el obturador se abre exponiendo el sensor a la luz, se vuelve a cerrar una vez transcurrido el tiempo de exposición, se abre de nuevo a tope el diafragma y finalmente el espejo vuelve a su posición inicial.

Como veis, son un montón de movimientos que se realizan en apenas una fracción de segundo (el vídeo de ejemplo está ralentizado más de cien veces con respecto a la velocidad real) y que dan una idea de la complejidad de diseño de una cámara de este tipo; especialmente cuando se trata de modelos de alta gama en las que podemos disparar en ráfaga a una velocidad de 11 imágenes por segundo (en el siguiente vídeo tenéis una Nikon D3 disparando a dicha velocidad con un sonido que se asemeja al de una ametralladora).

Y ya está; el principio básico de funcionamiento de las cámaras réflex no es más que lo que os he explicado en estos párrafos. Obviamente hay muchos más factores que los ingenieros han de diseñar como el sistema de enfoque, el mecanismo del obturador, la medición de la luz… Una serie de temas sobre los que iremos hablando a lo largo del tiempo.

En todo caso, si he sabido explicarme de tal modo que os haya quedado claro cuál es el principio de funcionamiento de una cámara réflex (que a su vez es la principal diferencia con respecto a otros tipos de cámaras) habré logrado lo que me había propuesto en esta entrada. Ya habrá tiempo de profundizar en otros temas complementarios como los que os comentaba hace un momento, que el verano es muy largo  😉

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

El sistema Nikon VR de estabilización óptica

Mi curiosidad por la tecnología suele llevarme a probar aquello que me llama la atención, así que como hacía ya tiempo que tenía ganas de ver qué tal funcionan los estabilizadores de imagen en los objetivos Nikon me he hecho con un 18-55 VR que añade esta característica a la óptica que venía “de serie” con mi D40.

En la entrada de hoy me gustaría echar un vistazo a este sistema óptico de estabilización de Nikon así como hacer un pequeño análisis del objetivo que os comentaba hace un momento enfrentándolo a la versión sin estabilizar.

Nikkor AF-S 18-55 VR

¿Qué es eso del VR?

VR son las iniciales de Vibration Reduction (reducción de vibraciones) y consiste en un sistema óptico en el interior del objetivo que mantiene la imagen estable para que podamos disparar a velocidades relativamente bajas sin que la fotografía salga movida. Ya os mostré en una entrada de hace unas semanas los resultados entre emplear estabilización o no en una cámara de vídeo; así que hoy vamos a meternos en aspectos algo más técnicos sobre el funcionamiento del sistema:

La clave de la estabilización óptica de Nikon está en una serie de elementos que detectan el temblor de nuestro pulso a la hora de sujetar la cámara y unos actuadores que mueven una lente en el interior del objetivo para compensar esos mismos movimientos de tal modo que al final la imagen llegue lo más estable posible a la superficie del sensor.

VRweb

A grandes rasgos (ya sabéis que la finalidad de estos artículos no es dar una sesuda explicación científica; sino dar una visión global fácilmente comprensible de cómo funcionan las cosas) hay en el interior del objetivo dos sensores de movimiento que van a analizar constantemente el temblor de la cámara estado uno en el eje horizontal y otro en el vertical.

Estos dos componentes son muy precisos y envían instantáneamente la información de esos pequeños movimientos a un chip que se encargará de analizarlos y enviar en tiempo real los impulsos necesarios a dos pequeños motores que desplazarán una lente interna en sentido contrario a los movimientos detectados en los ejes X e Y. El movimiento de esta lente va a conseguir que la imagen que vemos por el visor (y por tanto la que llega al sensor) sea más estable y podamos sacar fotografías más nítidas, pues va a corregir esos minúsculos movimientos que a veces acaban con lo que podría haber sido una buena imagen.

VR y luminosidad: fines parecidos, cosas diferentes

Para hacer fotografías en condiciones de poca luz vamos a tener dos fieles aliados tanto en los objetivos equipados con estabilización óptica como en aquellos que son muy luminosos (aperturas de f/2.8, f/1.8, f/1.4…). Sin embargo, ambas cosas apenas tienen nada en común como vamos a ver a continuación.

Hay una regla clásica en fotografía que dice que si tenemos que disparar una fotografía a pulso evitaremos que esta salga movida si aplicamos un tiempo de exposición inferior a la inversa de la focal empleada en su equivalente en 35 mm.

Por cierto, aprovecho para comentar que la palabra que se emplea para denominar a una fotografía que ha quedado borrosa debido al movimiento de la cámara es trepidada; que seguro que lo habéis leído en más de una ocasión por diversos foros y páginas de fotografía.

Fotografía claramente trepidada por el mal pulso del fotógrafo

Detalle de una fotografía claramente trepidada por el mal pulso del fotógrafo

A efectos prácticos esto indica que en una Nikon D40 (sensor DX, factor de multiplicación 1,5) empleando un objetivo de 50 mm debemos disparar nuestras fotografías con un tiempo de exposición inferior a 1/75 segundos. Del mismo modo, si empleamos en esa misma cámara un teleobjetivo de 300 mm debemos disparar con él a 1/450 o más rápido. Por la misma razón, con un ultra-gran angular de 10 mm podemos hacer fotografías incluso a 1/15 segundos sin miedo a que salgan trepidadas.

Ahora bien, como comprenderéis, todo lo aquí expuesto está sujeto al pulso del fotógrafo; y es que nada tienen que ver los resultados de disparar una misma fotografía con manos de relojero o dejándole la cámara a un tío que se ha tomado ocho cafés en apenas un par de horas.

Vamos a resumir un poco lo que es cada cosa:

Luminosidad vs. VR

AF 50mm 1.8D (objetivo luminoso) y AF-S 18-55 1:3.5-5.6 VR (objetivo estabilizado)

– Un objetivo luminoso nos va a permitir captar mucha luz gracias a su amplia apertura, por lo que va a aprovechar la iluminación existente de tal modo que no necesitaremos largos tiempos de exposición para obtener una fotografía correctamente expuesta y por ello evitaremos la trepidación de la imagen. Si abriendo lo suficiente el diafragma del objetivo conseguimos una correcta exposición a, por ejemplo, 1/100 podremos congelar el movimiento de una persona caminando o un coche circulando a poca velocidad.

En los madriles

Fotografía tomada a pulso con el 50mm 1.8D (f/2.5, 1/25)

– La estabilización óptica (VR en este caso) también evita la trepidación de la imagen, pero en este caso lo que hace es permitirnos disparar sujetando la cámara “a pulso” durante más tiempo del indicado por la regla de la inversa de la focal anteriormente comentada, logrando que la cantidad del luz que llegue al sensor acabe siendo la suficiente como para lograr una imagen bien expuesta pese a que las condiciones lumínicas de la escena no sean demasiado favorables. En este caso el tiempo va a ser largo; y vamos a poder hacer fotografías, por ejemplo, a 1/4 sin que los elementos estáticos de la escena aparezcan trepidados. Sin embargo, con un tiempo de exposición tan largo, cualquier elemento móvil que haya en la escena aparecerá borroso por su propio movimiento por muy lento que este sea.

Los fantasmas de la noche

Fotografía tomada a pulso con un Nikkor AF 50mm f/1.8D

Evidentemente la mejor solución es unir ambos conceptos en un objetivo muy luminoso y equipado con estabilización óptica; conjuntos de altas prestaciones que existen en la gama alta de los fabricantes pero para los que hay que pagar una millonada: sin ir más lejos el famoso 70-200 2.8 VR de Nikon se cotiza a 1700 euros; así que a la inmensa mayoría de los aficionados a la fotografía nos toca hacer números y decidirnos por una u otra opción en el mejor de los casos.

Nikkor AF-S 18-55 vs. Nikkor AF-S 18-55 VR

Como os decía al principio de la entrada, recientemente he adquirido un 18-55 VR para poder probar por mí mismo las bondades del sistema de estabilización. Aprovechando la posibilidad de poner un objetivo al lado del otro y compararlos punto por punto he decidido realizar un breve apartado dentro del artículo para ilustrar mejor las diferencias entre emplear VR o no.

18-55 vs. 18-55 VR (I)

Los dos objetivos en su forma más compacta (el VR es un poco más largo)

18-55 vs. 18-55 VR (II)

Máxima extensión (en este caso tienen la misma longitud)

Externamente ambos objetivos no se diferencian demasiado. De hecho, si lo montara en la cámara y me pusiera a hacer fotos por casa estoy seguro de que nadie me diría “oye, ese objetivo no es el mismo que tenías antes, ¿verdad?”. A primera vista apenas se distinguen por el interruptor que activa o desactiva el sistema VR y las dos letras doradas que indican esta característica. En cuanto a dimensiones, la versión estabilizada es 6 mm más larga, 3 mm más ancha y 60 gramos más pesada que mi anterior objetivo. El resto de diferencias son poco menos que anecdóticas; como el acabado rugoso de la superficie, el leve cambio de aspecto del elemento frontal o el hecho de que la lente posterior tiene un diámetro ligeramente mayor.

18-55 vs. 18-55 VR (III)

Elementos ópticos frontales (leves diferencias)

18-55 vs. 18-55 VR (IV)

Lentes posteriores (ligeramente mayor la del objetivo dotado de VR)

Internamente sí que hay bastantes cambios, y es que en condiciones de poca luz el sistema VR representa una seria ventaja con respecto a los objetivos no estabilizados. Es cierto que la diferencia es más acusada en los teleobjetivos porque son más propensos a sacar fotos movidas al más ligero temblor de manos debido a su mayor distancia focal; pero después de estar pensando sobre el tema he llegado a la conclusión de que un angular con VR se adapta bastante bien al tipo de fotografías que suelo hacer como os comentaré al final del artículo.

Además, Nikon ha modificado el diseño óptico de este modelo de objetivo, añadiendo algunas lentes más a las presentes en el original y modificando otras; lo que explica en parte el incremento de peso de la óptica estabilizada. Podéis apreciar ese aumento de la complejidad óptica en los dos diagramas siguientes:

pic_004

Diseño óptico del 18-55

Diseño óptico del 18-55 VR

Diseño óptico del 18-55 VR

Como veis, en el objetivo estabilizado la luz atraviesa más lentes hasta que toca el sensor de la cámara; pero pese a ello la nitidez no se resiente en absoluto como demuestran todas las reviews que he leído sobre esta óptica y las imágenes que he sacado estos días con ella.

El VR en funcionamiento

Bueno, con respecto al funcionamiento he de comentar que el sistema de estabilización no está activo durante todo el tiempo, sino que entra en acción únicamente al pulsar el botón del disparador para enfocar y durante la toma de la imagen. Durante ese tiempo se activan los sensores y actuadores que os comentaba unos párrafos más arriba y la imagen se hace más estable. Eso sí, al emplear el objetivo equipado con el sistema VR se perciben dos pequeñas diferencias con respecto a la versión más básica:

VR

Por un lado, acostumbrado a objetivos sin ningún tipo de estabilización, al mirar por el visor y pulsar el disparador hasta la mitad se nota que nuestro pulso queda “amortiguado”. Los leves (repito: leves) movimientos de nuestros brazos y muñecas no se perciben en lo que vemos a través de la cámara, y reconozco que en la primera toma de contacto me sentía un poco extraño. Es como si nuestras manos y nuestro cerebro fueran desacompasados; y de hecho he leído alguna vez que los primeros usos del VR pueden dar lugar a una cierta sensación de mareo hasta que nos habituemos a su dinámica de funcionamiento.

Por otra parte, si estamos haciendo fotografías en completo silencio vamos a notar cómo dentro del objetivo se escucha una leve vibración (que no es más que el elemento óptico estabilizador haciendo su trabajo) así como un ligero “clack” cuando se activa y desactiva el sistema. Como os digo, son sonidos apenas perceptibles que sólo escucharemos en pleno silencio o si pegamos el oído al objetivo; algo no muy habitual al hacer fotografías, dicho sea de paso.

Eso sí, al encontrarnos ante un objetivo bastante básico el VR que equipa también lo es. De hecho, en objetivos más caros y de mayores prestaciones,además de la activación/desactivación del sistema, también contaremos con otros controles para diferentes tipos de situaciones (por ejemplo para disparar desde un vehículo en movimiento). Sin embargo, el principio de funcionamiento es esencialmente el mismo, por lo que todo lo explicado es válido para toda óptica equipada con VR sea de la gama que sea.

Las diferencias en forma de imágenes

Siempre digo que el movimiento se demuestra andando, así que después de toda esta teoría vamos a ver un par de ejemplos en forma de fotografías realizadas con el VR desactivado y activado respectivamente para que veáis con vuestros propios ojos las diferencias existentes:

VR OFF

Disparada a pulso con un objetivo Nikkor AF-S 18-55@44mm. Nikon D40, f/5.3, 1/4, ISO 200

VR ON

Disparada a pulso con un objetivo Nikkor AF-S 18-55 VR@44mm. Nikon D40, f/5.3, 1/4, ISO 200

Como podéis ver, es muy complicado tomar una fotografía nítida a pulso cuando la cámara nos obliga a disparar a una velocidad de 1/4 de segundo. Sin embargo, con el objetivo VR la imagen quedó completamente nítida al primer intento, demostrando que la ventaja al emplear el sistema de estabilización es evidente.

Conclusión

Me encantan los paisajes, sobre todo cuando la oscuridad empieza a hacerse patente. Lo que ocurre es que para sacar una fotografía nítida ante la falta de luz tenemos la opción de subir la ISO de la cámara o abrir mucho el diafragma. Por un lado no soy muy partidario de subir el ISO alegremente, pues en las zonas de sombra va a aparecer un granulado coloreado que no me gusta nada. Debido a ello, la opción de abrir el diafragma parece mucho mejor, y de hecho lo es de no ser porque al hacerlo perdemos profundidad de campo, que es justo lo contrario que pretendemos a la hora de fotografiar un paisaje (¿recordáis aquella entrada sobre la distancia hiperfocal?).

Es verdad que mi 50mm f/1.8 me permite hacer fotos nocturnas a pulso sin demasiados problemas; pero del mismo modo siempre he dicho que no es una óptica adecuada para paisajes en general porque es demasiado “larga”. Si abro el diafragma casi a tope pierdo mucha profundidad de campo y no podré tener todo enfocado ni de casualidad; a lo que hay que añadir el problema de que debemos olvidarnos de captar zonas amplias para centrarnos nada más que en los detalles debido a que el objetivo se convierte en términos de ángulo de visión en un 75 mm; demasiado estrecho para estos menesteres además de que en la D40 estamos obligados a enfocar a mano empleando esta óptica. Por eso, hasta el momento las fotografías de paisajes que he hecho han sido realizadas con mi 18-55 bajo la luz del sol; pues es el único modo de poder cerrar bastante el diafragma, captar un amplio campo de visión y mantener una alta velocidad de disparo.

La plaza de Cervantes a través de los rosales

Por todo esto que os he contado hoy es por lo que he creído que un angular VR me puede traer bastantes ventajas a la hora de fotografiar paisajes al anochecer: según Nikon gracias a la estabilización de la óptica es posible disparar entre cuatro y ocho veces más rápido (dos o tres pasos de diafragma) que con el objetivo no estabilizado; algo que en la práctica se traduce en que podemos hacer fotografías nítidas sin trípode a velocidades bastante bajas si tenemos un pulso más o menos decente como habéis visto en el ejemplo anterior, por lo que es un buen sistema para retratar la ciudad a la luz de las farolas sin necesidad de recurrir a aperturas extremas (ganando por tanto profundidad de campo).

En fin, con el tiempo iré viendo si realmente ha merecido la pena la inversión en esta nueva óptica, pero sobre el papel creo que me va a permitir hacer algunas cosas que hasta ahora no podía a no ser que fuera cargado con el trípode (cosa que evito siempre que puedo).

¡Ya os iré mostrando los resultados por aquí!  😉

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia