¿Qué es la regulación mediante PWM?

Hay un concepto que estudié en la carrera y que siempre me ha llamado poderosamente la atención: la modulación por anchura pulso, más conocida por sus siglas en inglés PWM (de Pulse Width Modulation).

Aunque es algo que se aplica a muchos ámbitos, me gustaría explicaros este concepto usando para ello unos dispositivos a los que estoy muy acostumbrado: las linternas LED. De este modo creo que os puedo narrar en qué consiste este tipo de regulación y poneros unos ejemplos muy visuales de ello. Vamos allá.

Olight i3E EOS (V)

Dos modos de regular una magnitud de naturaleza analógica

Os decía que emplearía linternas para explicaros la regulación PWM porque es una aplicación muy típica de este concepto y creo que es un ejemplo que todos podéis imaginaros por ser extremadamente simple.

Imaginad una linterna LED que cuente con un regulador de la intensidad lumínica. Es decir, que podemos seleccionar varios escalones entre una luz muy tenue y toda la que pueda dar el diodo LED que transforma la energía de las baterías en fotones.

La potencia lumínica de una linterna viene dada en términos generales por el producto de la tensión por la corriente que recibe el LED. Para simplificar nuestros cálculos vamos a suponer que el driver mantiene la tensión constante de tal modo que la regulación de la potencia se realiza variando nada más que la corriente entregada. Esta suposición tampoco es que se aleje mucho de la realidad, ya que lo habitual en las linternas LED es que posean un regulador de tensión que hace que al LED le llegue el mismo voltaje independientemente de la carga de la batería.

Olight i3E EOS (I)

Circuitería de control (driver) en la cabeza de una Olight i3E EOS

El modo “caro” de modificar el grado de iluminación que da la linterna es empleando un regulador que permita variar la intensidad de la corriente entregada al LED. De este modo la linterna emitirá cierta cantidad de luz de forma continuada. Si el LED requiere 80 mA para lucir al 100% de su capacidad, el regulador entregará 40 mA para que luzca a la mitad (50%), 20 mA para que luzca a una cuarta parte de su capacidad (25%), 72 mA para que luzca al 90%… Creo que el concepto queda claro, ¿no?

Lo que ocurre, como os decía antes, es que la circuitería necesaria para regular esta corriente suele ser más compleja (y por tanto de mayor coste) que la electrónica necesaria para regular por PWM, que es lo que vamos a ver ahora.

El ciclo de trabajo

La regulación por anchura de pulso es un modo digital de conseguir regular una magnitud de manera que parezca analógica. En esencia se trata de conmutar muy rápidamente entre los estados de encendido (con el LED al 100% de su potencia) y apagado jugando con el ciclo de trabajo de tal modo que la intensidad lumínica obtenida es la de dicho ciclo de trabajo.

Para entenderlo de un modo sencillo vamos a poner como ejemplo una linterna cuya frecuencia de conmutación sea de 100 Hz, lo que significa que cada segundo hacemos 100 ciclos ON-OFF; lo que equivale a decir que un ciclo ON-OFF dura una centésima de segundo. También supondremos que el LED a plena potencia consume los 80 mA que puse antes como ejemplo.

160123_113606

Algunas linternas de mi colección

Pues bien, si durante esa centésima de segundo (que equivale a 10 milésimas de segundo) hacemos que nuestra circuitería electrónica mantenga el LED encendido durante las primeras 5 milésimas y lo apague las 5 siguientes tendremos un ciclo de trabajo del 50% y esa será la intensidad lumínica de la linterna con respecto a la que daría el LED continuamente a plena potencia.

Si la electrónica mantiene el LED encendido las primeras 2 milésimas y apagado las 8 siguientes tendremos un ciclo de trabajo del 20% y, por tanto, una intensidad lumínica inferior al caso anterior. Otro ejemplo sería tener el LED encendido las primeras 7 milésimas de cada ciclo y apagado los 3 restantes, lo que daría un ciclo de trabajo del 70% y una intensidad lumínica de ese mismo valor.

Si nos vamos a los casos extremos (algo que a los ingenieros nos encanta) vamos a ver que si tenemos el LED encendido durante las 10 milésimas tenemos un ciclo de trabajo del 100% que indica que la linterna está encendida a plena potencia. Del mismo modo, si el tiempo de encendido es de 0 milésimas y las restantes 10 milésimas está apagado, el ciclo de trabajo es del 0% y por tanto la linterna no emite luz alguna.

Un modo gráfico de ver todo esto

El ladrillo que os he escrito en los párrafos superiores es sencillo de entender si hacemos una gráfica de cada caso, que es lo que os voy a plantar a continuación:

En ella, tenéis en cada caso en el eje horizontal la evolución en el tiempo y el eje vertical los dos estados posibles del LED (ON y OFF) donde el estado ON implica un consumo de corriente de 80 mA y el estado OFF de 0 mA. Asumimos también que el cambio entre los dos estados se realiza de forma instantánea.

Pues bien, si consideramos la intensidad lumínica en cada uno de los casos como el área rayada que se genera en cada ciclo ON-OFF, haciendo una cuenta sencilla observamos que la modulación PWM equivaldría en términos lumínicos a una corriente constante del valor proporcional al ciclo de trabajo.

Por tanto, si queremos obtener una luminosidad del 20% de la nominal del LED podemos introducir un regulador analógico de corriente que de 16 mA o bien diseñar un regulador PWM funcionando con un ciclo de trabajo del 20%; siendo esta última solución, por lo general, más sencilla y económica.

160124_144552

LED de una Olight i3S EOS en modo firefly (el más tenue de todos)

Desventajas de usar PWM

No todo van a ser bondades; y es que a la hora de diseñar un sistema regulado por PWM (en nuestro caso una linterna) es muy importante tener en cuenta la frecuencia de conmutación del dispositivo, ya que de no ser lo suficientemente rápida el ojo va a percibir un parpadeo que puede llegar a ser bastante molesto. En el caso de una bombilla incandescente no es un punto crítico porque su tiempo de encendido y apagado es de algunos milisegundos, de modo que los escalones del cambio de estado están muy amortiguados; pero en un LED que se enciende y se apaga en un tiempo prácticamente nulo, si no elegimos una frecuencia de conmutación lo suficientemente rápida enseguida vamos a notar ese irritante parpadeo.

Esto que os comento puedo mostrarlo con la ayuda de una cámara de fotos, así que os voy a dejar en primer lugar con una fotografía de una linterna regulada sin PWM (Olight i3S EOS) moviéndose rápidamente delante del objetivo:

Olight i3S EOS moviéndose delante de la cámara a su mínima potencia. No hay rastro de PWM

Como veis, el trazo dejado por la luz es una línea continua porque el LED está luciendo uniformemente en todo momento. Sin embargo, cuando hago esto mismo empleado una linterna regulada por PWM (una Nitecore Tube en este caso) vais a ver que el resultado es bien distinto:

Nitecore Tube moviéndose delante de la cámara a su nivel de potencia más bajo y mostrando un marcado PWM

¿Veis los encendidos y apagados del LED? Son debidos a que aunque a simple vista parece que la linterna luce de forma constante en realidad el PWM la está haciendo encenderse y apagarse a toda velocidad tal y como os comenté en el apartado anterior.

Pues bien, ya que estamos vamos a ver la frecuencia de conmutación del LED en este caso concreto, pues si miramos los datos EXIF de la imagen que hemos capturado vemos que el tiempo de exposición es de 1/50 seg. Si contamos el número de parpadeos que ha hecho el LED durante ese breve lapso de tiempo (se ve claramente que han sido 11 veces) podemos calcular que la frecuencia de conmutación es de aproximadamente 550 Hz.

Este modelo de linterna tiene una frecuencia de conmutación bastante baja en el modo más tenue, pero algo mayor en los modos intermedios y no emplea PWM en el modo más brillante (lógico, ya que el LED recibe toda la corriente que puede admitir). Ya que estamos vamos a ver esos dos casos más que os comento.

La Nitecore Tube posee una frecuencia de PWM más alta en los modos intermedios

En la imagen que tenéis aquí encima la linterna está funcionando a potencia intermedia y su frecuencia de conmutación es mayor que en el caso anterior. Para hacer la fotografía he empleado un tiempo de exposición de 1/400 seg y cuento 9 parpadeos del LED. Esto nos da una frecuencia de conmutación de aproximadamente 3200 Hz. En este caso el parpadeo es apenas perceptible por el ojo humano, lo que hace que su uso sea más relajado para la vista.

Me gustaría aclarar que la frecuencia de conmutación en estos modos intermedios de la Nitecore Tube es la misma para todos ellos, pero lo que va a variar entre unos y otros es el ciclo de trabajo tal y como hemos visto en el diagrama de tiempo que os dibujé anteriormente.

La Nitecore Tube no muestra ningún tipo de PWM en su potencia máxima

Si ponemos la linterna a plena potencia no se hace uso de PWM para regular, ya que en realidad no hay nada que regular debido a que el LED está recibiendo continuamente la corriente de encendido, de modo que el rastro que deja es perfectamente continuo.

Comparativa visual entre la Nitecore Tube (arriba) y la Olight i3S EOS (abajo) funcionando en sus modos de potencia más bajos

Por último, no quería dejar pasar la oportunidad de mover a la vez ambas linternas delante de la cámara funcionando a su mínima potencia para que podáis apreciar la diferencia entre la que va regulada por PWM y la que está regulada a corriente constante. Como podéis ver, mientras que una ha parpadeado 15 veces en los 1/40 seg que ha durado la exposición de la imagen (esto me da una frecuencia de PWM de unos 600 Hz) la otra ha dejado un rastro perfectamente continuo.

La importancia de la frecuencia de conmutación

Ya os habréis dado cuenta de que el ejemplo que os puse en papel era muy teórico porque en él os hablaba de una frecuencia de conmutación para el PWM de 100 Hz; pero lo hice para poder usar unos tiempos muy definidos y fácilmente entendibles. En caso de fabricar una linterna LED que implemente esa frecuencia de conmutación sería prácticamente una luz estroboscópica y acabaríamos mareados si hiciéramos uso de ella.

Daos cuenta de que en su modo más bajo la Nitecore Tube tiene una frecuencia de conmutación de entre 500 y 600 Hz y os aseguro que a simple vista se nota bastante. Sin embargo, a esos aproximadamente 3 KHz a los que conmuta en los modos intermedios el ojo ya no aprecia parpadeo; pero es que se trata de una frecuencia 30 veces superior a la del ejemplo que os puse, por lo que os podéis hacer una idea de la velocidad a la que es capaz de encenderse y apagarse un LED. Para que os hagáis una idea, conmutar a 3000 Hz significa que el ciclo de encendido y apagado del LED dura aproximadamente 0,3 milésimas de segundo.

160123_115128

Bueno, y hasta aquí este artículo cuya intención no era otra que compartir con vosotros un tema que a mí me parece muy interesante y que además tiene muchas aplicaciones tanto en el mundo industrial como en la vida diaria, ya que esta misma teoría que rige el funcionamiento del PWM en las linternas es aplicable a control de motores, caudales, temperaturas… Ahora que lo conocéis seguro que os dais cuenta de que estáis rodeados de aparatos controlados por PWM.

Como curiosidad, me gustaría sacar a relucir esta fotografía tomada en una isleta de la calle de Alcalá, donde a mi derecha pasaban coches que mostraban sus luces rojas de posición y/o freno y a mi izquierda los coches que venían de frente y, por tanto, haciendo brillar sus luces blancas de cruce.

Entre el tráfico de Madrid

¿Veis algún rastro de PWM? Pues no, porque la fotografía la hice hace ya doce años (todavía me acuerdo perfectamente del momento de captar esta imagen) y los coches todavía ni siquiera soñaban con llevar luces exteriores LED. Si hiciéramos esta misma foto hoy en día o aseguro que muchas de esas líneas difuminadas pero continuas serían una larga sucesión de puntos porque en los últimos tiempos los LEDs están copando el mundillo de la iluminación.

¡Nos leemos!

Anuncios

Los modos de medición

Ya comenté en una entrada reciente que cuando pulsamos hasta la mitad el disparador de la cámara, esta mide la luz que entra a través del objetivo para calcular una exposición acorde a las condiciones de iluminación existentes. Cómo se realiza esta medición y de qué manera podemos influir en ella es lo que voy a tratar de contaros en este artículo.

The sky is in flames!

Midiendo la luz

La luz que entra en la cámara a través del objetivo llega a una serie de sensores repartidos por todo el encuadre de tal modo que en función de la cantidad de luz que alcance cada uno de ellos y de la importancia que queramos dar a cada zona de la imagen se calculará una determinada exposición mediante la variación de apertura, tiempo y sensibilidad.

Nikon EM (1979)

Como os digo, aunque en las modernas cámaras digitales hay multitud de sensores encargados de medir la luminosidad de la escena (1005 en el caso de la Nikon D300) nosotros vamos a poder dar la misma importancia a todos ellos o bien definir una zona en la que la medición de la luz se tenga más en cuenta que en el resto a través de los modos de medición.

Los tres modo de medición

Para esto que os comentaba antes, en la práctica totalidad de cámaras digitales (no sólo réflex) vamos a contar con tres modos de medición de la luz: matricial, ponderada al centro o puntual; y aunque por lo general la primera de ellas suele ser la más empleada por su flexibilidad, enseguida vamos a ver que las otras dos pueden sernos de mucha utilidad en condiciones de iluminación complicadas o para ciertos tipos de imágenes.

Luces, sombras, siluetas y reflejos (versión en vertical)

En los siguientes párrafos intentaré haceros ver en qué consiste cada uno de los tres modos y acompañar la parrafada con un ejemplo gráfico que os de una idea del tipo de situación en el que nos puede venir bien dicho modo. Vamos con ello:

1. Matricial

Como os decía antes, en la inmensa mayoría de los casos el modo de medición matricial funcionará correctamente y dará como resultado una exposición correcta y ajustada; sobre todo cuando la iluminación de la escena es más o menos uniforme. Algo que podremos comprobar con el histograma que incluye cualquier cámara digital.

Y es que la medición matricial no es más que un promedio de las lecturas de todos los sensores presentes en el encuadre, por lo que en caso de que haya una pequeña zona subexpuesta o sobreexpuesta esto apenas tendrá influencia sobre la exposición de la fotografía.

Sin embargo, en caso de que el resultado no sea el esperado (la fotografía ha quedado más clara o más oscura de lo deseado) podremos ajustarla a nuestro gusto con la compensación de exposición volviendo a realizar el disparo a continuación. En cualquier caso, para situaciones en las que queramos afinar más (o escenas en las que haya zonas con niveles de iluminación muy dispares) es por lo que existen los dos modos que vamos a ver después.

En el ejemplo que tenéis a continuación podréis ver que aunque las palmeras están ligeramente subexpuestas (más oscuras de lo deseado) debido al contraluz reinante, la cámara ha calculado una exposición tal que el cielo no se ha quemado y el degradado que busca el horizonte ha quedado con unos tonos muy naturales.

Atardecer en Oropesa

2. Ponderada al centro

El modo ponderado al centro tiene una utilidad fundamental: los retratos. En ese tipo de imágenes lo que buscamos es dar protagonismo a la persona que aparece en el centro de la imagen tratando de que el espectador se olvide de todo lo demás. Por tanto, la medición ponderada al centro lo que hace es dar más importancia a la zona media del encuadre, influyendo menos en el cálculo de la exposición la luz que haya en la parte más externa.

En el ejemplo que acompaña a este apartado podéis ver un caso típico de retrato en el que usar la medición ponderada al centro de tal modo que el rostro de la persona quede correctamente expuesto sin importar demasiado si el fondo queda algo más claro o más oscuro de lo deseado. Al fin y al cabo de lo que se trata es de “aislar” el primer plano del fondo de la imagen.

Apmomp (retrato vertical)

3. Puntual

La medición puntual tiene en cuenta solamente una pequeña zona de la imagen (en el centro del encuadre o en el punto de enfoque seleccionado) para realizar el cálculo de la exposición. Se suele emplear en fotografías en las que es importante destacar un detalle para que el espectador se centre fundamentalmente en él, de tal modo que los amantes del macro recurren a él con frecuencia.

Se trata de un modo que también se emplea a veces en los retratos; pero normalmente para primerísimos planos en los que lo que ha de quedar correctamente expuesto (y enfocado) son los ojos de la persona a la que estamos fotografiando.

En las flores que ilustran este apartado medí la luz sobre los pétalos de la que está perfectamente enfocada; pues aunque la iluminación de las tres flores era bastante uniforme, no quería que el fondo oscuro provocara una sobreexposición y, por tanto, un quemado irremediable de los pétalos blancos.

Días floridos II

Conclusión

Como señalé anteriormente, lo más habitual a la hora de hacer fotografías es emplear el modo de medición matricial, pues los avances de la electrónica presentes en las cámaras actuales hacen que esta calcule casi siempre una exposición correcta. En caso de que la fotografía resultante sea más clara o más oscura de lo que teníamos previsto jugaremos con la compensación de exposición para acercarnos al resultado deseado.

Sin embargo, para ciertas escenas en las que hay zonas de luces y sombras muy marcadas en el encuadre, a la hora de hacer retratos o si nos enfrentamos a trabajos en macro, los modos de medición ponderada al centro y puntual nos pueden venir muy bien para atinar con la exposición en la primera toma.

20090809-DSC_0244

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

Compatibilidad del autofocus entre objetivos y cámaras Nikon

Por lo que leo en los comentarios, muchos de vosotros tenéis dudas sobre qué objetivos son compatibles con vuestras réflex Nikon; de modo que he decidido crear esta entrada para tratar de orientaros de un modo sencillo sobre la compatibilidad de objetivos y cámaras de esta marca.

Mis tres primeros objetivos

Aclarar desde el principio que en esta entrada me referiré exclusivamente al tema del enfoque automático en las cámaras réflex Nikon; dejando el tema de la medición automática de la luz y otros aspectos para el futuro. Además, sólo me retrotraeré en el tiempo hasta la época de los objetivos AF, ya que hablar de los AI-S y AI puede hacer que os liéis para nada, ya que si os acabáis de comprar vuestra primera réflex no creo que os vayáis a poner a comprar objetivos manuales de los años 60.

· Cámaras sin motor de enfoque en el cuerpo

Todas aquellas cámaras Nikon que no dispongan de un saliente en forma de “destornillador” en la bayoneta donde se montan los objetivos carecen de motor de enfoque y, por tanto, necesitaremos ópticas que lo incorporen por si mismas (esta idea la estrenó la D40 de cara a realizar un cuerpo más pequeño, ligero y barato).

En estas cámaras tendrán plena funcionalidad los objetivos en cuyo nombre aparezcan las siglas AF-S o AF-I (estos últimos son extremadamente raros de ver).

Nikon D40 + Nikkor 50mm 1.8D

Podéis montar objetivos sin motor de enfoque (ahí arriba tenéis mi D40 con un Nikkor AF 50mm f/1.8D montado) pero tendréis que enfocarlos manualmente; algo que no siempre es práctico o sencillo.

El listado de cámaras que, a día de hoy, no incluyen motor de enfoque es el siguiente:

D40, D40x, D60, D3000, D3100, D5000, D5100

· Cámaras con motor de enfoque en el cuerpo

Apéndice metálico que permite enfocar automáticamente objetivos de tipo AF

El resto de réflex digitales Nikon sí incluyen motor de enfoque en su cuerpo (la fotografía anterior es de la montura de mi D300) por lo que además de los objetivos de tipo AF-S también enfocarán automáticamente todos los de tipo AF, que son precisamente los que emplean el “destornillador” al que me refería antes.

Otras cosas a tener en cuenta

Por descontado, los objetivos de enfoque manual no enfocarán automáticamente en ninguna cámara tenga o no motor de enfoque, ya que son anteriores a la aparición de dicho sistema. Recordemos que hasta la popularización del autofocus a medidados de los 80 el fotógrafo siempre tenía que enfocar a mano.

Baldo

Me gustaría añadir que desde hace tiempo las segundas marcas de objetivos también se han subido al carro de la inclusión de motores de enfoque en el cuerpo, distinguiéndose estos por la inclusión de las siglas HSM en el caso de Sigma.

Tokina y Tamron no suelen incluir este aspecto en las denominaciones de sus objetivos (hace años Tamron solía añadir BIM; iniciales de Build In Motor, pero parece que ha dejado de hacerlo) por lo que si nuestra cámara no posee motor de enfoque lo mejor es preguntar al vendedor sobre este aspecto antes de comprar para asegurarnos de que no nos estamos llevando un modelo antiguo que no enfocará automáticamente en nuestra cámara.

En cualquier caso, si os interesa el tema, os recomiendo echar un vistazo a la entrada (de hace tiempo ya) titulada Diferencias fundamentales entre objetivos Nikon AF y AF-S.

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

La imparable fuerza del agua

El inicio de semana ha sido complicado en la provincia de Castellón. Este año las lluvias tardaron en hacer acto de presencia; pero cuando lo han hecho se han encargado de dar buena muestra del poder que tienen. En estos sitios de Levante no suele llover en muchas ocasiones; pero cuando lo hace más vale que tengas cerca algún lugar en el que refugiarte.

Borrasca

Como veis, la entrada de hoy no trata sobre fotografía, aunque emplearé algunas imágenes propias para ilustrar estos párrafos. Lo que me gustaría contaros en esta ocasión más bien tiene que ver con la naturaleza, las leyes físicas y el sentido común.

Entendiendo la dinámica de los fluidos

Lo primero que hay que tener claro es que el agua fluye por la acción de la gravedad y por el principio de los vasos comunicantes. Por tanto, si se pone a llover en lo alto de un monte el agua terminará por bajar hasta las faldas y ya se encargará ella de buscar el camino que le sea más cómodo para hacer su recorrido.

Por eso mismo, el agua siempre tiende a ir por los cauces secos de los ríos; ya que se trata de los puntos más bajos del terreno y ahí es donde se acumulará todo el agua de los alrededores para empezar a circular montaña abajo.

Retratando el Henares

Por su parte, los líquidos contenidos en dos recipientes (y podéis llamar recipiente incluso a un océano) comunicados entre ellos siempre tenderán a ponerse al mismo nivel. Y da igual si conectáis con una manguera una piscina y un vaso; al final la lámina de agua quedará a la misma altura en ambos.

Por eso mismo, cuando se produce una inundación por el desbordamiento de un río se inundan garajes y bajos; ya que el agua siempre encuentra una vía de comunicación con esos recintos y los anega hasta ponerlos a nivel con la calle.

La fuerza del agua

Leyendo noticias como la de la muerte de cinco personas atrapadas dentro de sus coches en el cauce del Río Seco en las cercanías de Castellón me doy cuenta de que mucha gente piensa que el agua es inofensiva y que cuando llueve todo lo más que sucede es que se forman charcos más o menos grandes que acaban evaporándose cuando sale el sol.

La realidad es que el agua en grandes cantidades y desplazándose en busca de los puntos más bajos del terreno tiene una fuerza devastadora que acaba llevándose por delante todo lo que represente un obstáculo para ella. Tal vez en las ciudades, con su sistema de alcantarillado, la cosa no tenga mayor importancia y una tormenta sólo tenga como consecuencia que nos mojemos un poco las punteras de nuestros zapatos preferidos; pero en entornos naturales (y el cauce seco de un río lo es) las tormentas pueden ser muy peligrosas si no tenemos un poco de cabeza.

A storm is approaching (I)

Para hacernos una idea de la fuerza que tiene el agua podéis pensar que un metro cúbico (un cubo de un metro por cada lado) son mil litros de agua y pesa una tonelada.  Un metro cúbico viene a ocupar más o menos lo que un palé de supermercado lleno de cajas de leche; y os aseguro que el cauce de un río con el agua bajando deprisa puede llevar cientos de metros cúbicos por segundo, por lo que su fuerza es enorme.

Los cauces “secos”

Aunque durante buena parte del año haya cauces que estén completamente secos, eso no quiere decir que nunca más vaya a ir agua por ellos. De hecho, como os decía antes, un cauce tiene su razón de ser en que es la parte de la orografía más favorable para que discurra el agua; y a base de muchos siglos de lluvias, de arrastrar sedimentos y de desgastar piedras, el terreno queda modelado bajo los dos principios que rigen el movimiento del agua.

De hecho, os dejo a continuacion dos fotografías tomadas en el río Chinchilla de Oropesa del Mar. En la primera podéis ver a ras de suelo las piedras que conforman el lecho del río y que la mayor parte del año es un atajo que la gente suele tomar para salir directamente a la N-340 desde las inmediaciones de Marina D’or.

Lecho del Río Chinchilla (Oropesa del Mar)

Como veis, se trata de una especie de camino de varios metros de ancho que se puede recorrer a pie o en coche sin excesivos problemas con tiempo seco. Sin embargo, tras un par de días de fuertes lluvias en el interior de la provincia (domingo y lunes básicamente) el agua acumulada en las zonas montañosas comienza a descender y al final termina toda en el cauce del Chinchilla, dando lugar a un panorama bastante diferente.

Por cierto, como dato curioso os diré que donde el agua hace esa curva al fondo de la siguiente fotografía es el lugar desde el que hice la fotografía de las piedras que os mostraba hace un instante.

Lluvias en Oropesa del Mar (22/11/2011)

Os puedo decir que la crecida del río fue bastante rápida: a última hora de la mañana del lunes esa zona tenía algo de agua acumulada; pero a eso de las seis de la tarde, al volver a pasar por allí cerca, me encontré con que el cauce corría velozmente aguas abajo buscando el mar a toda velocidad impidiendo incluso el paso por la carretera que cruza la vía del tren por debajo de un puente como muestra la siguiente imagen.

Lluvias en Oropesa del Mar (22/11/2011)

A la mañana siguiente el panorama no era muy diferente; y la luz del día permitía ver el color del agua debido al arrastre de tierras de modo que aquello parecía el Amazonas.

Lluvias en Oropesa del Mar (22/11/2011)

Por lo que os decía antes de la fuerza del agua en movimiento, si alguien pasa por ahí con su coche subestimando ese peligro corre el riesgo de que las ruedas “pierdan pie” y el coche se vea arrastrado por la corriente como si fuera una lata de Coca-cola.

Y es que si existe un cauce seco podéis dar por sentado que allí va a acabar llegando todo el agua que caiga en caso de lluvia; ya que las propias leyes físicas han dictaminado que ese es el recorrido más cómodo para el agua (que, al igual que la electricidad, siempre busca el camino con menos resistencia para llegar de una punto ‘A’ hasta un punto ‘B’) y ya hará por encauzarse por ese camino se encuentre lo que se encuentre por delante.

Si no conocéis el Río Seco, podéis echar un vistazo a la fotografía que os muestro bajo este párrafo y que retrata al ahora famoso cauce a su paso por Castellón hace un par de semanas. Como veis, mediante una obra bastante compleja se ha optado por encauzar al río artificialmente evitando así crecidas descontroladas e inundaciones de las tierras circundantes.

Río Seco (Castellón)

En lo que quiero que os fijéis es en el tamaño del cauce del río, pues si miráis con atención veréis que a ambos lados del mismo discurren sendas carreteras de sentido único que os darán una idea del ancho de la “autopista acuática”. Obviamente, en un mundo en el que nadie construye un metro más de lo estrictamente necesario, semejante sección sólo puede tener una explicación: el río puede llegar a ser muy caudaloso bajo ciertas circunstancias, ya que si siempre estuviera seco no se hubiera hecho semejante obra.

Eso sí, cuando hice esta fotografía el río no llevaba agua (lo que se ve es un simple charco de una lluvia puntual) pero el miércoles pasé por esa zona con el coche y la cosa había cambiado bastante (aunque lamentablemente no pude pararme a hacer fotos).

Si ya de por si un río pequeño como el Chinchilla impone bastante respeto al verlo con agua circulando, os podéis imaginar que un cauce más ancho que una autopista puede ser algo muy peligroso si nos planteamos atravesarlo en medio de una tormenta. Sin embargo, hay gente que todavía no le ve el peligro a ese tipo de acciones y al final todos los años hay víctimas por cosas así.

Noche de tormenta

Sólo espero que ya que este blog parece llegar cada día hasta más gente (las cifras de visitas así me lo indican) al menos haya alguien que se acuerde de estos párrafos la próxima vez que se plantee cruzar un cauce seco con su coche en medio de una tormenta. Recordad que lo peligroso no es lo que esté cayendo ahí mismo en ese momento; sino lo que haya caído en lo alto de las montañas hace ya un buen rato.

Diez pequeños consejos para hacer mejores fotos

Decían que las bicicletas son para el verano; pero lo que más se ve en esta época del año son cámaras de fotos. Por tanto, mejor que enseñaros a pedalear he pensado que podría ser interesante dar un repaso rápido a algunos conceptos muy simples que os permitirán hacer mejores fotografías durante estas vacaciones que para muchos acaban de comenzar.

Setas de verano

Sea como sea, todo lo que voy a contaros en estas líneas está desarrollado en los artículos que he ido publicando tiempo atrás; pero la idea es resumir en pocas palabras una decena de conceptos sencillos que se pueden aplicar a cualquier cámara ya sea réflex, compacta o bridge y si queréis ampliar información podéis hacer click en los enlaces relacionados que hay bajo cada foto de ejemplo; ya que os llevarán a un artículo más extenso sobre el tema en cuestión.

1. Llena el encuadre

Un elemento que llene el encuadre siempre será más atractivo que otro que apenas sea una miniatura en el centro de la imagen.

Días floridos II

Al hacer una foto intenta llenar el encuadre

2. Aplica zoom óptico a los retratos

A la hora de hacer un retrato desenfocaremos más el fondo si aplicamos zoom óptico (un objetivo con distancia focal larga en el caso de las réflex) lo que resaltará al sujeto principal.

Apmomp (retrato de medio cuerpo)

Retratos con focales largas y aperturas grandes

3. Busca perspectivas originales

No te quedes en la típica foto tomada a la altura de los ojos apuntando de frente. Agáchate, súbete a un banco, apunta hacia arriba o hacia abajo… Un elemento de lo más cotidiano cobra una dimensión sorprendente visto desde un ángulo original.

30

Tipos de planos en fotografía en función del ángulo de visión

4. Aplica la regla de los tercios

Aunque a veces funciona, en general trata de huir de la simetría. El modo más sencillo de hacerlo es la regla de los tercios, que se basa en colocar los elementos principales fuera del centro del encuadre.

A la sombra

La regla de los tercios

5. Sujeta correctamente tu cámara

Usa siempre las dos manos para agarrar tu cámara (sea del tipo que sea) porque de ese modo evitarás vibraciones que darán al traste con la nitidez de tus imágenes.

Luis en multiángulo

Cómo sujetar correctamente una cámara réflex

6. Sé consciente de que la luz lo es todo en fotografía

Dado que la fotografía consiste en captar la luz que reflejan las cosas, entenderéis que las condiciones luminosas son básicas a la hora de lograr una foto atractiva. Por mucho que dominéis los programas de retoque fotográfico, siempre es recomendable partir de una buena base.

Soportales

La importancia de la luz en la fotografía de exteriores

Dos formas distintas de fotografiar el atardecer

7. Busca la máxima nitidez

Para mí es fundamental captar las cosas del modo más nítido posible y, en general, creo que esto siempre ayuda a conseguir imágenes visualmente atractivas que captan la atención del espectador.

Morro de gos

Consejos para mejorar la nitidez de nuestras fotos

8. Juega con los enfoques y los desenfoques

Conseguir una gran nitidez en el sujeto principal de la fotografía desenfocando al mismo tiempo el resto de los elementos hará que la atención del espectador se centre en ese motivo principal, por lo que usando la técnica adecuada podemos destacar lo que nosotros queramos.

Lechuza

Jugando con la profundidad de campo

Jugando con los desenfoques

9. Aprovecha la fuerza del blanco y negro

El blanco y negro no es cosa del pasado, ya que ayuda mucho en aquellas composiciones donde las formas y las texturas son lo principal por encima de las tonalidades de la imagen.

¿Campo de concentración?

El mundo en blanco y negro

10. Diviértete

A no ser que seas un profesional de la fotografía, de lo que se trata a la hora de salir con la cámara es de pasar un buen rato; así que aprovecha esos días en los que te sientes inspirado y nunca salgas a hacer fotos si ves que en realidad no te apetece demasiado.

Miradas

Las fotografías no se hacen; se sienten

Si a la hora de salir a hacer fotos aplicáis algunos de estos consejos os daréis cuenta de que vuestras imágenes ganan puntos; así que aprovechad ahora que hay muchas horas de luz y practicad todo lo que podáis, que seguro que durante el frío invierno os gusta echar un vistazo a esos recuerdos veraniegos.

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

La escala de distancias de los objetivos

Hay un elemento que hace años incorporaban todos los objetivos y que en los últimos tiempos parece haber caído en el olvido: la escala de distancias. No obstante, puesto que en este blog me gusta abarcar todos los aspectos posibles de la fotografía, hoy nos vamos a centrar en ver la utilidad de este “invento” a través de una breve explicación teórica y unas cuantas fotografías de ejemplo.

Marexar 28mm f/2.8 (para hacer macro mediante inversión)

La profundidad de campo

En una fotografía sólo puede haber un plano (perpendicular a la cámara) perfectamente enfocado y de grosor infinitesimal. En el caso de un retrato suelen ser los ojos de la persona o si es un paisaje algún elemento cercano que queramos destacar por encima del resto. No obstante, jugando con parámetros como la apertura o la distancia focal vamos a hacer que la distancia a la que las cosas aparecen nítidas por delante o por detrás del plano de enfoque (lo que se conoce como profundidad de campo o, abreviadamente, PDC) sea mayor o menor en función de lo que queramos expresar con nuestra imagen.

En el caso del retrato esta PDC va a ser muy pequeña porque lo que queremos en esta disciplina fotográfica es aislar al sujeto principal del fondo de la fotografía; y eso lo logramos haciendo que prácticamente todo lo que no esté en el plano de sus ojos quede difuminado. Puesto que para hacer esto necesitaremos focales largas y/o aperturas grandes, ya tenéis el tipo de objetivo que nos va a venir mejor para este tipo de fotografías: un teleobjetivo luminoso.

Estela

Por su parte, si estamos ante un paisaje, lo que nos va a interesar es que aparezcan nítidos la mayoría de los elementos que lo componen; por lo que aunque hayamos situado el plano de enfoque en un elemento más o menos cercano, empleando una apertura pequeña y/o una distancia focal corta cumpliremos con nuestros propósitos de que se represente con nitidez todo lo que aparece en el encuadre; algo para lo que un angular nos vendrá muy bien. Por cierto, os recuerdo que para esto viene muy bien saber lo que es la distancia hiperfocal.

Un rincón para contemplar las nubes

La escala de distancias

Como os decía al principio de este artículo, la escala de distancias es algo que incorporaban prácticamente todos los objetivos hace unos años y que en los últimos tiempos ha desaparecido casi por completo. Por eso, no es raro ver que hay gente que pregunta por el funcionamiento de este elemento y de ahí la inspiración para escribir este artículo.

No está de más recordar que un objetivo tiene mayor profundidad de campo cuanto menor es su distancia focal (vuelvo al ejemplo del paisaje y el angular). Por tanto, a mayor distancia focal más estrecha va a ser la franja en la que aparecen nítidos los elementos y eso es algo que vamos a ver reflejado en las escalas de distancias según la focal empleada como luego comentaré.

Por cierto, aprovecho también para comentar que la PDC no es simétrica con respecto al plano de enfoque, sino que se distribuye de forma que la zona nítida estará repartida un tercio por delante del plano de enfoque y dos tercios por detrás del mismo. Y aunque creo que nadie se liará con esto, me gustaría aclarar que cuando digo “por delante del plano de enfoque” me refiero a un área situada entre dicho plano y la cámara; mientras que “por detrás del plano de enfoque” se refiere a lo que queda más lejos del plano de enfoque desde la posición en la que está situada la cámara (y por lo tanto nosotros).

Marexar 28mm f/2.8 (para hacer macro mediante inversión)

En la imagen anterior podemos ver que el anillo de distancias se compone de dos elementos: por una parte tenemos un elemento solidario con el cuerpo del objetivo que consiste en una línea central que marca la distancia de enfoque con una serie de líneas a uno y otro lado asociadas a diferentes aperturas. Por otra parte existe una escala de distancias expresada tanto en pies como en metros de forma no lineal que gira junto al anillo de enfoque (que es la zona rugosa que podéis apreciar claramente). Estos dos elementos en conjunto (de nada sirve el uno sin el otro) son los encargados de decirnos antes del disparo qué es lo que aparecerá nítido en nuestra imagen y lo que quedará fuera de foco.

Cuatro casos prácticos

Una vez aclarado sobre el papel para qué es y para qué sirve la escala de distancias me gustaría hacer una pequeña demostración práctica de lo anteriormente expuesto a través de cuatro ejemplos muy sencillos. En ellos os mostraré cómo leer los datos que nos da la escala en diferentes situaciones, así que vamos a ello:

a) 28mm enfocado a 1,5 metros

Marexar 28mm f/2.8 (enfoque a 1,5 m)

En la imagen que tenéis sobre estas líneas podéis ver claramente la escala de distancias del 28mm que compré el otro día. Como podéis ver, enfocando a algo que esté a metro y medio de distancia y disparando a f/22 (la apertura que ofrece más profundidad de campo en esta óptica) tendremos nitidez entre todo lo que esté colocado a 70 cm de nosotros y el infinito (e incluso más allá).

Del mismo modo, si disparamos a f/11 obtendremos nitidez entre aproximadamente un metro y algo más de tres; y disparando a una apertura de f/4 la profundidad de campo se situará muy pocos centímetros por delante y por detrás del plano de enfoque. Por cierto, ya veis que las marcas que corresponderían a f/2.8 (el diafragma más amplio disponible) ni siquiera aparecen, porque esta apertura daría lugar a una PDC tan estrecha que prácticamente estarían sobre la línea verde que marca la distancia al plano de enfoque.

b) 50mm enfocado a 1,5 metros

Nikon AF 50mm f/1.8D (enfoque a 1,5 m)

En el caso del 50mm f/1.8 que tenéis sobre estas líneas y que también he enfocado a metro y medio, podéis apreciar que sólo tenemos marcas de PDC para f/22 y f/11; siendo la “zona de nitidez” bastante más estrecha que en el objetivo anterior. Esto es debido a la mayor distancia focal del objetivo, ya que cuanto más larga es una óptica más estrecha es la PDC resultante a igual apertura.

En este caso, a f/22 y enfocando el objetivo a metro y medio, la zona nítida va a ir desde poco más de un metro hasta los dos y medio aproximadamente; mientras que a f/11 se va a reducir a una estrecha franja de unos pocos centímetros en las inmediaciones del plano de enfoque dejando claro por qué una óptica larga da una PDC muy estrecha (especialmente si lo combinamos con una gran apertura).

c) 28mm enfocado a 0,3 metros

Marexar 28mm f/2.8 (enfoque a 0,3 m)

Como podéis ver, si enfocamos del 28mm a una distancia corta (30 cm) el rango de elementos que estarán en foco se reduce considerablemente, ya que a f/16 la PDC abarca apenas unos pocos centímetros en torno al plano de enfoque. En el caso de disparar a f/4 la PDC sería del orden de un centímetro según se aprecia en la fotografía anterior.

d) 50mm enfocado a 0,5 metros

Nikon AF 50mm f/1.8D (enfoque a 0,5 m)

Disparando a f/11 con el 50mm enfocado a medio metro vamos a tener una PDC de apenas un par de centímetros como muestra la imagen que tenéis sobre este párrafo. Del mismo modo, a f/22 la PDC resultante sería de unos 5 cm por delante del plano de enfoque y aproximadamente 10 cm por detrás del mismo. Os podéis imaginar que la PDC resultante disparando a la máxima apertura disponible (f/1.8) sería tan sumamente estrecha que habría que afinar mucho el enfoque para conseguir que el motivo principal de nuestra imagen no aparezca borroso.

Empleando la escala de distancias en la teoría de la hiperfocal

Una consecuencia muy evidente de todo lo anterior es que si nuestro objetivo cuenta con escala de distancias podemos emplear la técnica de la distancia hiperfocal fácilmente de dos modos diferentes:

Paisaje costero

1. Si tenéis un elemento sobre el que queráis enfocar la cámara, una vez realizado este paso podéis mirar la escala de distancias y seleccionar la apertura que queda sobre la marca de infinito. En el ejemplo ‘a’ vemos que dicha apertura sería f/16.

2. Si queréis hacer la fotografía a una apertura determinada, podéis hallar la distancia hiperfocal de dicha apertura girando el anillo de enfoque de tal modo que coincida con la marca de infinito. En esas condiciones tendréis nitidez en todos los elementos situados entre la mitad de la distancia de enfoque marcada por el objetivo y el infinito (esto no es más que un modo diferente de ver el punto anterior).

M-30

Conclusiones

Con el fin de ahorrar costes, la escala de distancias se ha convertido en un elemento cada vez más raro en los objetivos fabricados actualmente. Cierto es que gracias a la fotografía digital podemos comprobar al instante si ese elemento que aparece unos metros por detrás del motivo principal de nuestra imagen está lo suficientemente nítido y en caso negativo repetir la fotografía; pero siempre es útil saber para qué sirven esos números y esas líneas que aparecen en el cuerpo de algunas ópticas que cuentan con algunos años ya en sus cristales y engranajes.

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

Cómo interpretar las curvas MTF de los objetivos

Buscando información sobre un objetivo concreto puede que os hayáis encontrado alguna vez con una gráfica un poco enrevesada que se supone debería ayudar a valorar de un simple vistazo las características ópticas del modelo en cuestión pero cuya interpretación a veces acaba por convertirse en un auténtico galimatías; y es que hoy vamos a hablar de las curvas MTF.

Review Nikon 16-85 VR

Pérdidas de calidad

En un mundo ideal, los objetivos se limitarían a proyectar lo que “ven” sobre el sensor de la cámara sin ningún tipo de distorsión óptica ni aberración cromática. Sin embargo, esto no es posible y todo objetivo introduce en mayor o menor medida una cierta pérdida de calidad que también afectará al contraste y a la resolución.

De hecho, os habréis dado cuenta de que a veces las esquinas de las imágenes aparecen algo más difuminadas que la zona central; y precisamente esa pérdida de definición y contraste es lo que refleja una gráfica de este tipo. Pues bien, el problema es que en muchas ocasiones estas curvas MTF (de Modulation Transfer Function) lejos de ayudar al común de los mortales le confunden todavía más; ya que al aparecer varias líneas de diferentes colores la cosa no parece estar muy clara que digamos. Sin embargo, enseguida vamos a ver que el tema es más sencillo de lo que parece.

Trabajando sobre un ejemplo real

Vamos a usar para explicar todo esto la curva MTF del recién aparecido Nikon AF-S 85mm f/1.4 G (tele corto de gran apertura diseñado sobre todo para retratos) cuyo imponente aspecto tenéis a continuación:

Las curvas MTF son empleadas por todos los fabricantes de ópticas y son muy similares (por no decir iguales) en todos los casos; pero este artículo lo voy a centrar en las publicadas por Nikon debido a que es la marca de mi equipo fotográfico y por tanto es la que mejor conozco.

La apertura empleada

Las curvas MTF se suelen dar para la máxima apertura del objetivo, que es donde peores resultados vamos a obtener (siempre os digo que cerrando un poco el diafragma podéis obtener mayor nitidez en vuestras fotografías). También hay fabricantes que dan diferentes gráficas hechas a varias aperturas; pero como siempre sucede que los peores resultados en cuanto a nitidez y pérdida de contraste se obtienen a plena apertura, lo más útil es ponernos en el caso más desfavorable y ser conscientes de que a medida que vayamos cerrando el diafragma la cosa irá mejorando.

AF-D Nikkor 50mm 1:1.8 (III)
Los ejes de la gráfica

En una gráfica MTF hay dos ejes: el vertical indica el contraste de la imagen, siendo máximo en su parte superior y mínimo en la inferior; mientras que el horizontal indica la distancia al centro de la fotografía en milímetros.

Como os decía, el eje vertical indica el contraste de la imagen, siendo del 100% en su parte superior y del 0% en la inferior. Por lo tanto, en términos generales, cuanto más alta vaya la línea de la gráfica mejores características tendrá sobre el papel la óptica analizada. Habitualmente se considera como excelente un valor por encima del 80% y como bueno si está por encima del 60%. Por debajo de este último valor la pérdida de nitidez va a empezar a ser apreciable a simple vista.

En cuanto a la distancia al centro de la imagen (representada en el eje horizontal) la cosa es bastante simple. El extremo izquierdo de la gráfica representa el centro exacto de la imagen, mientras que el derecho será una de las esquinas de la misma, que es donde va a haber una caída más brusca del contraste en la mayor parte de las ópticas.

Las diferentes líneas

En lo que a las líneas se refiere, como podéis ver en el ejemplo que estamos empleando las hay de dos tipos y colores: continuas y punteadas tanto en rojo como en azul.

La nomenclatura de la parte inferior (S10, M10, S30 y M30) no es muy clarificadora; y aunque tiene su sentido, lo que voy a hacer es explicaros cómo interpretar la gráfica de un modo bastante simple:

Las líneas de color rojo indican un muestreo a 10 líneas por milímetro (lpmm); lo que representa un detalle medio que es el predominante en una fotografía y el que mejor capta nuestro ojo de un simple vistazo. Por su parte, las líneas azules indican un muestreo a 30 lpmm que pone a prueba la capacidad de resolución de la imagen, ya que en este caso se trata de un detalle muy fino.

Lechuza

Por tanto las líneas rojas nos dan idea del contraste general que es capaz de lograr la óptica; mientras que las líneas azules nos dan idea de la capacidad de resolución del objetivo. Parámetro este último muy importante si nos compramos una cámara equipada con un sensor de una densidad de pixels tremenda; ya que si el objetivo no es capaz de ofrecer la resolución que el sensor necesita nos vamos a encontrar con patrones extraños de ruido (Moiré) y otros defectos ópticos que no son objeto de esta entrada.

¿Por qué hay una línea rayada y otra continua de cada color?

El hecho de que haya dos líneas de cada color indica que en una de ellas el sampleo se ha hecho a 45º con respecto a la horizontal y en la otra a 135º. Esto nos va a venir muy bien para intuir el bokeh que es capaz de ofrecer la óptica; ya que idealmente las dos líneas de cada color deberían de ser coincidentes y en ese hipotético caso el bokeh sería perfecto (suave, progresivo, sin bordes marcados…). Por el contrario, si las líneas de cada color llevan trayectorias muy diferentes nos vamos a encontrar un bokeh “nervioso” o deformado, no resultando demasiado agradable a la vista.

Luces de selenio

Extrapolando la información a los cuatro cuadrantes

Por tanto, lo que la gráfica está representando es la resolución de uno de los cuatro cuadrantes de la imagen; pero al existir simetría tanto vertical como horizontalmente podemos aplicar estos datos a todo el encuadre, ya que la información de los otros tres cuadrantes es exactamente la misma sólo que reflejada como muestra la siguiente gráfica que he confeccionado:

Lo que tenéis sobre este párrafo es una especie de representación de la definición del objetivo aplicada a toda la imagen. Como veis, serían las esquinas de la fotografía las zonas de la imagen más afectadas por la pérdida de nitidez y contraste; siendo el muestreo a 10 lpmm más o menos estable en todo el encuadre pero notándose cierta pérdida de calidad cuando hacemos el análisis a 30 lpmm debido a la mayor exigencia de resolución. Obviamente esta gráfica que os presento no es nada científico; pero es para dejaros claro que la información que nos dan es extrapolable a los cuatro cuadrantes de la imagen.

Por cierto, a estas alturas del artículo ya os habréis dado cuenta de por qué una óptica diseñada para formato 35mm (FX en Nikon) rinde también en cámaras equipadas con sensores APS-C, ¿verdad? Al fin y al cabo, lo que estamos haciendo en tal caso es emplear solamente la zona central del objetivo, que es donde mejor rendimiento ofrece.

Ferias y Fiestas Alcalá 2010

Otros ejemplos de curvas MTF

Después de todo lo visto, os habrá quedado claro que la situación ideal sería aquella en la que las líneas de las gráficas fueran completamente planas y todas ellas estuvieran en la parte superior de la gráfica porque esto implicaría que no hay pérdidas de contraste ni definición en todo el encuadre. Y aunque esto es algo imposible de diseñar porque todo sistema óptico implica una cierta pérdida de calidad por leve que sea, hay algunos objetivos cuyas gráficas resultan tan espectaculares como su precio.

Fijaos por ejemplo en las curvas MTF de un Nikon AF-S 600mm f/4 G VR (8600 euros) e imaginad la nitidez y la calidad que es capaz de ofrecer.

En cualquier caso, hay que tener en cuenta que los objetivos de gran apertura suelen viñetear bastante cuando abrimos su diafragma al máximo y debido a ello sus curvas MTF pueden parecer un tanto “pobres”. Sin ir más lejos, el conocido Nikkor AF-S 50mm f/1.4 G (370 euros) tiene una curva que no es ni mucho menos para tirar cohetes; pero es ahí cuando debemos de ser conscientes de que es un objetivo que rinde muy bien cerrando el diafragma un par de pasos y sólo debemos emplearlo a plena apertura bajo ciertas circunstancias.

Por contra, el Nikon AF-S DX 35mm f/1.8 G (200 euros) mantiene más o menos bien el tipo disparando a plena apertura como podéis apreciar en su gráfica y de ahí que las fotos realizadas con él siempre tengan un toque que a mí particularmente me gusta mucho; especialmente disparando a f/2.8; apertura a la cual el desenfoque siegue siendo acusado y las líneas de la gráfica seguramente aparezcan bastante más planas que a f/1.8.

Supongo que os habréis dado cuenta de que en todos los casos la gráfica MTF viene dada para sensores de 35mm (fijaos que el eje horizontal llega hasta los 22mm; que es más o menos la mitad de la diagonal de unos de esos sensores), de modo que aunque el objetivo esté diseñado para cámaras con sensor APS-C igualmente se expresa el rendimiento en todos los objetivos de la misma manera.

Quiere esto decir que en realidad la gráfica para esta última óptica debería de llegar sólo hasta los 15mm de longitud, ya que aproximadamente esa es la distancia que hay en un sensor APS-C entre el centro del mismo y una de las esquinas. Por tanto, la gráfica “útil” del Nikon AF-S DX 35mm f/1.8 G una vez recortada apropiadamente quedaría del siguiente modo:

Como podéis apreciar, la ganancia de rendimiento de un objetivo diseñado para formato completo al ser empleado en una cámara APS-C es más que evidente; ya que la caída más brusca de rendimiento suele tener lugar en esa zona exterior que diferencia ambos tipos de sensores. De hecho, si miráis la gráfica del 85mm del que hablábamos al principio del artículo y hacéis un corte imaginario por los 15mm os daréis cuenta de que las líneas de la gráfica quedan casi completamente planas.

Nada más que datos técnicos

De cualquier modo, todo esto está muy bien sobre el papel y nos puede ayudar a decidirnos por una u otra óptica antes de ir a la tienda. Sin embargo, la nitidez depende de muchos otros factores; y de nada servirá el más caro de los objetivos si por sistema disparamos a f/22 o tenemos un pulso tembloroso que arruina cualquier foto que no haya sido disparada a pleno sol. Los datos técnicos son muy útiles y a mí, como ingeniero, me llaman mucho la atención; pero en el mundillo de la fotografía lo más importante es sacarle partido a lo que tenemos y centrarnos tan sólo en sentir lo que nos rodea.

El lienzo de arena

Más información

Modulation Transfer Function (Ken Rockwell)

Understanding MTF (Luminous landscape)

Listado de objetivos Nikon para consulta de características (foro Nikonistas)

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia