¿Qué es la regulación mediante PWM?

Hay un concepto que estudié en la carrera y que siempre me ha llamado poderosamente la atención: la modulación por anchura pulso, más conocida por sus siglas en inglés PWM (de Pulse Width Modulation).

Aunque es algo que se aplica a muchos ámbitos, me gustaría explicaros este concepto usando para ello unos dispositivos a los que estoy muy acostumbrado: las linternas LED. De este modo creo que os puedo narrar en qué consiste este tipo de regulación y poneros unos ejemplos muy visuales de ello. Vamos allá.

Olight i3E EOS (V)

Dos modos de regular una magnitud de naturaleza analógica

Os decía que emplearía linternas para explicaros la regulación PWM porque es una aplicación muy típica de este concepto y creo que es un ejemplo que todos podéis imaginaros por ser extremadamente simple.

Imaginad una linterna LED que cuente con un regulador de la intensidad lumínica. Es decir, que podemos seleccionar varios escalones entre una luz muy tenue y toda la que pueda dar el diodo LED que transforma la energía de las baterías en fotones.

La potencia lumínica de una linterna viene dada en términos generales por el producto de la tensión por la corriente que recibe el LED. Para simplificar nuestros cálculos vamos a suponer que el driver mantiene la tensión constante de tal modo que la regulación de la potencia se realiza variando nada más que la corriente entregada. Esta suposición tampoco es que se aleje mucho de la realidad, ya que lo habitual en las linternas LED es que posean un regulador de tensión que hace que al LED le llegue el mismo voltaje independientemente de la carga de la batería.

Olight i3E EOS (I)

Circuitería de control (driver) en la cabeza de una Olight i3E EOS

El modo “caro” de modificar el grado de iluminación que da la linterna es empleando un regulador que permita variar la intensidad de la corriente entregada al LED. De este modo la linterna emitirá cierta cantidad de luz de forma continuada. Si el LED requiere 80 mA para lucir al 100% de su capacidad, el regulador entregará 40 mA para que luzca a la mitad (50%), 20 mA para que luzca a una cuarta parte de su capacidad (25%), 72 mA para que luzca al 90%… Creo que el concepto queda claro, ¿no?

Lo que ocurre, como os decía antes, es que la circuitería necesaria para regular esta corriente suele ser más compleja (y por tanto de mayor coste) que la electrónica necesaria para regular por PWM, que es lo que vamos a ver ahora.

El ciclo de trabajo

La regulación por anchura de pulso es un modo digital de conseguir regular una magnitud de manera que parezca analógica. En esencia se trata de conmutar muy rápidamente entre los estados de encendido (con el LED al 100% de su potencia) y apagado jugando con el ciclo de trabajo de tal modo que la intensidad lumínica obtenida es la de dicho ciclo de trabajo.

Para entenderlo de un modo sencillo vamos a poner como ejemplo una linterna cuya frecuencia de conmutación sea de 100 Hz, lo que significa que cada segundo hacemos 100 ciclos ON-OFF; lo que equivale a decir que un ciclo ON-OFF dura una centésima de segundo. También supondremos que el LED a plena potencia consume los 80 mA que puse antes como ejemplo.

160123_113606

Algunas linternas de mi colección

Pues bien, si durante esa centésima de segundo (que equivale a 10 milésimas de segundo) hacemos que nuestra circuitería electrónica mantenga el LED encendido durante las primeras 5 milésimas y lo apague las 5 siguientes tendremos un ciclo de trabajo del 50% y esa será la intensidad lumínica de la linterna con respecto a la que daría el LED continuamente a plena potencia.

Si la electrónica mantiene el LED encendido las primeras 2 milésimas y apagado las 8 siguientes tendremos un ciclo de trabajo del 20% y, por tanto, una intensidad lumínica inferior al caso anterior. Otro ejemplo sería tener el LED encendido las primeras 7 milésimas de cada ciclo y apagado los 3 restantes, lo que daría un ciclo de trabajo del 70% y una intensidad lumínica de ese mismo valor.

Si nos vamos a los casos extremos (algo que a los ingenieros nos encanta) vamos a ver que si tenemos el LED encendido durante las 10 milésimas tenemos un ciclo de trabajo del 100% que indica que la linterna está encendida a plena potencia. Del mismo modo, si el tiempo de encendido es de 0 milésimas y las restantes 10 milésimas está apagado, el ciclo de trabajo es del 0% y por tanto la linterna no emite luz alguna.

Un modo gráfico de ver todo esto

El ladrillo que os he escrito en los párrafos superiores es sencillo de entender si hacemos una gráfica de cada caso, que es lo que os voy a plantar a continuación:

En ella, tenéis en cada caso en el eje horizontal la evolución en el tiempo y el eje vertical los dos estados posibles del LED (ON y OFF) donde el estado ON implica un consumo de corriente de 80 mA y el estado OFF de 0 mA. Asumimos también que el cambio entre los dos estados se realiza de forma instantánea.

Pues bien, si consideramos la intensidad lumínica en cada uno de los casos como el área rayada que se genera en cada ciclo ON-OFF, haciendo una cuenta sencilla observamos que la modulación PWM equivaldría en términos lumínicos a una corriente constante del valor proporcional al ciclo de trabajo.

Por tanto, si queremos obtener una luminosidad del 20% de la nominal del LED podemos introducir un regulador analógico de corriente que de 16 mA o bien diseñar un regulador PWM funcionando con un ciclo de trabajo del 20%; siendo esta última solución, por lo general, más sencilla y económica.

160124_144552

LED de una Olight i3S EOS en modo firefly (el más tenue de todos)

Desventajas de usar PWM

No todo van a ser bondades; y es que a la hora de diseñar un sistema regulado por PWM (en nuestro caso una linterna) es muy importante tener en cuenta la frecuencia de conmutación del dispositivo, ya que de no ser lo suficientemente rápida el ojo va a percibir un parpadeo que puede llegar a ser bastante molesto. En el caso de una bombilla incandescente no es un punto crítico porque su tiempo de encendido y apagado es de algunos milisegundos, de modo que los escalones del cambio de estado están muy amortiguados; pero en un LED que se enciende y se apaga en un tiempo prácticamente nulo, si no elegimos una frecuencia de conmutación lo suficientemente rápida enseguida vamos a notar ese irritante parpadeo.

Esto que os comento puedo mostrarlo con la ayuda de una cámara de fotos, así que os voy a dejar en primer lugar con una fotografía de una linterna regulada sin PWM (Olight i3S EOS) moviéndose rápidamente delante del objetivo:

Olight i3S EOS moviéndose delante de la cámara a su mínima potencia. No hay rastro de PWM

Como veis, el trazo dejado por la luz es una línea continua porque el LED está luciendo uniformemente en todo momento. Sin embargo, cuando hago esto mismo empleado una linterna regulada por PWM (una Nitecore Tube en este caso) vais a ver que el resultado es bien distinto:

Nitecore Tube moviéndose delante de la cámara a su nivel de potencia más bajo y mostrando un marcado PWM

¿Veis los encendidos y apagados del LED? Son debidos a que aunque a simple vista parece que la linterna luce de forma constante en realidad el PWM la está haciendo encenderse y apagarse a toda velocidad tal y como os comenté en el apartado anterior.

Pues bien, ya que estamos vamos a ver la frecuencia de conmutación del LED en este caso concreto, pues si miramos los datos EXIF de la imagen que hemos capturado vemos que el tiempo de exposición es de 1/50 seg. Si contamos el número de parpadeos que ha hecho el LED durante ese breve lapso de tiempo (se ve claramente que han sido 11 veces) podemos calcular que la frecuencia de conmutación es de aproximadamente 550 Hz.

Este modelo de linterna tiene una frecuencia de conmutación bastante baja en el modo más tenue, pero algo mayor en los modos intermedios y no emplea PWM en el modo más brillante (lógico, ya que el LED recibe toda la corriente que puede admitir). Ya que estamos vamos a ver esos dos casos más que os comento.

La Nitecore Tube posee una frecuencia de PWM más alta en los modos intermedios

En la imagen que tenéis aquí encima la linterna está funcionando a potencia intermedia y su frecuencia de conmutación es mayor que en el caso anterior. Para hacer la fotografía he empleado un tiempo de exposición de 1/400 seg y cuento 9 parpadeos del LED. Esto nos da una frecuencia de conmutación de aproximadamente 3200 Hz. En este caso el parpadeo es apenas perceptible por el ojo humano, lo que hace que su uso sea más relajado para la vista.

Me gustaría aclarar que la frecuencia de conmutación en estos modos intermedios de la Nitecore Tube es la misma para todos ellos, pero lo que va a variar entre unos y otros es el ciclo de trabajo tal y como hemos visto en el diagrama de tiempo que os dibujé anteriormente.

La Nitecore Tube no muestra ningún tipo de PWM en su potencia máxima

Si ponemos la linterna a plena potencia no se hace uso de PWM para regular, ya que en realidad no hay nada que regular debido a que el LED está recibiendo continuamente la corriente de encendido, de modo que el rastro que deja es perfectamente continuo.

Comparativa visual entre la Nitecore Tube (arriba) y la Olight i3S EOS (abajo) funcionando en sus modos de potencia más bajos

Por último, no quería dejar pasar la oportunidad de mover a la vez ambas linternas delante de la cámara funcionando a su mínima potencia para que podáis apreciar la diferencia entre la que va regulada por PWM y la que está regulada a corriente constante. Como podéis ver, mientras que una ha parpadeado 15 veces en los 1/40 seg que ha durado la exposición de la imagen (esto me da una frecuencia de PWM de unos 600 Hz) la otra ha dejado un rastro perfectamente continuo.

La importancia de la frecuencia de conmutación

Ya os habréis dado cuenta de que el ejemplo que os puse en papel era muy teórico porque en él os hablaba de una frecuencia de conmutación para el PWM de 100 Hz; pero lo hice para poder usar unos tiempos muy definidos y fácilmente entendibles. En caso de fabricar una linterna LED que implemente esa frecuencia de conmutación sería prácticamente una luz estroboscópica y acabaríamos mareados si hiciéramos uso de ella.

Daos cuenta de que en su modo más bajo la Nitecore Tube tiene una frecuencia de conmutación de entre 500 y 600 Hz y os aseguro que a simple vista se nota bastante. Sin embargo, a esos aproximadamente 3 KHz a los que conmuta en los modos intermedios el ojo ya no aprecia parpadeo; pero es que se trata de una frecuencia 30 veces superior a la del ejemplo que os puse, por lo que os podéis hacer una idea de la velocidad a la que es capaz de encenderse y apagarse un LED. Para que os hagáis una idea, conmutar a 3000 Hz significa que el ciclo de encendido y apagado del LED dura aproximadamente 0,3 milésimas de segundo.

160123_115128

Bueno, y hasta aquí este artículo cuya intención no era otra que compartir con vosotros un tema que a mí me parece muy interesante y que además tiene muchas aplicaciones tanto en el mundo industrial como en la vida diaria, ya que esta misma teoría que rige el funcionamiento del PWM en las linternas es aplicable a control de motores, caudales, temperaturas… Ahora que lo conocéis seguro que os dais cuenta de que estáis rodeados de aparatos controlados por PWM.

Como curiosidad, me gustaría sacar a relucir esta fotografía tomada en una isleta de la calle de Alcalá, donde a mi derecha pasaban coches que mostraban sus luces rojas de posición y/o freno y a mi izquierda los coches que venían de frente y, por tanto, haciendo brillar sus luces blancas de cruce.

Entre el tráfico de Madrid

¿Veis algún rastro de PWM? Pues no, porque la fotografía la hice hace ya doce años (todavía me acuerdo perfectamente del momento de captar esta imagen) y los coches todavía ni siquiera soñaban con llevar luces exteriores LED. Si hiciéramos esta misma foto hoy en día o aseguro que muchas de esas líneas difuminadas pero continuas serían una larga sucesión de puntos porque en los últimos tiempos los LEDs están copando el mundillo de la iluminación.

¡Nos leemos!

Cómo interpretar las curvas MTF de los objetivos

Buscando información sobre un objetivo concreto puede que os hayáis encontrado alguna vez con una gráfica un poco enrevesada que se supone debería ayudar a valorar de un simple vistazo las características ópticas del modelo en cuestión pero cuya interpretación a veces acaba por convertirse en un auténtico galimatías; y es que hoy vamos a hablar de las curvas MTF.

Review Nikon 16-85 VR

Pérdidas de calidad

En un mundo ideal, los objetivos se limitarían a proyectar lo que “ven” sobre el sensor de la cámara sin ningún tipo de distorsión óptica ni aberración cromática. Sin embargo, esto no es posible y todo objetivo introduce en mayor o menor medida una cierta pérdida de calidad que también afectará al contraste y a la resolución.

De hecho, os habréis dado cuenta de que a veces las esquinas de las imágenes aparecen algo más difuminadas que la zona central; y precisamente esa pérdida de definición y contraste es lo que refleja una gráfica de este tipo. Pues bien, el problema es que en muchas ocasiones estas curvas MTF (de Modulation Transfer Function) lejos de ayudar al común de los mortales le confunden todavía más; ya que al aparecer varias líneas de diferentes colores la cosa no parece estar muy clara que digamos. Sin embargo, enseguida vamos a ver que el tema es más sencillo de lo que parece.

Trabajando sobre un ejemplo real

Vamos a usar para explicar todo esto la curva MTF del recién aparecido Nikon AF-S 85mm f/1.4 G (tele corto de gran apertura diseñado sobre todo para retratos) cuyo imponente aspecto tenéis a continuación:

Las curvas MTF son empleadas por todos los fabricantes de ópticas y son muy similares (por no decir iguales) en todos los casos; pero este artículo lo voy a centrar en las publicadas por Nikon debido a que es la marca de mi equipo fotográfico y por tanto es la que mejor conozco.

La apertura empleada

Las curvas MTF se suelen dar para la máxima apertura del objetivo, que es donde peores resultados vamos a obtener (siempre os digo que cerrando un poco el diafragma podéis obtener mayor nitidez en vuestras fotografías). También hay fabricantes que dan diferentes gráficas hechas a varias aperturas; pero como siempre sucede que los peores resultados en cuanto a nitidez y pérdida de contraste se obtienen a plena apertura, lo más útil es ponernos en el caso más desfavorable y ser conscientes de que a medida que vayamos cerrando el diafragma la cosa irá mejorando.

AF-D Nikkor 50mm 1:1.8 (III)
Los ejes de la gráfica

En una gráfica MTF hay dos ejes: el vertical indica el contraste de la imagen, siendo máximo en su parte superior y mínimo en la inferior; mientras que el horizontal indica la distancia al centro de la fotografía en milímetros.

Como os decía, el eje vertical indica el contraste de la imagen, siendo del 100% en su parte superior y del 0% en la inferior. Por lo tanto, en términos generales, cuanto más alta vaya la línea de la gráfica mejores características tendrá sobre el papel la óptica analizada. Habitualmente se considera como excelente un valor por encima del 80% y como bueno si está por encima del 60%. Por debajo de este último valor la pérdida de nitidez va a empezar a ser apreciable a simple vista.

En cuanto a la distancia al centro de la imagen (representada en el eje horizontal) la cosa es bastante simple. El extremo izquierdo de la gráfica representa el centro exacto de la imagen, mientras que el derecho será una de las esquinas de la misma, que es donde va a haber una caída más brusca del contraste en la mayor parte de las ópticas.

Las diferentes líneas

En lo que a las líneas se refiere, como podéis ver en el ejemplo que estamos empleando las hay de dos tipos y colores: continuas y punteadas tanto en rojo como en azul.

La nomenclatura de la parte inferior (S10, M10, S30 y M30) no es muy clarificadora; y aunque tiene su sentido, lo que voy a hacer es explicaros cómo interpretar la gráfica de un modo bastante simple:

Las líneas de color rojo indican un muestreo a 10 líneas por milímetro (lpmm); lo que representa un detalle medio que es el predominante en una fotografía y el que mejor capta nuestro ojo de un simple vistazo. Por su parte, las líneas azules indican un muestreo a 30 lpmm que pone a prueba la capacidad de resolución de la imagen, ya que en este caso se trata de un detalle muy fino.

Lechuza

Por tanto las líneas rojas nos dan idea del contraste general que es capaz de lograr la óptica; mientras que las líneas azules nos dan idea de la capacidad de resolución del objetivo. Parámetro este último muy importante si nos compramos una cámara equipada con un sensor de una densidad de pixels tremenda; ya que si el objetivo no es capaz de ofrecer la resolución que el sensor necesita nos vamos a encontrar con patrones extraños de ruido (Moiré) y otros defectos ópticos que no son objeto de esta entrada.

¿Por qué hay una línea rayada y otra continua de cada color?

El hecho de que haya dos líneas de cada color indica que en una de ellas el sampleo se ha hecho a 45º con respecto a la horizontal y en la otra a 135º. Esto nos va a venir muy bien para intuir el bokeh que es capaz de ofrecer la óptica; ya que idealmente las dos líneas de cada color deberían de ser coincidentes y en ese hipotético caso el bokeh sería perfecto (suave, progresivo, sin bordes marcados…). Por el contrario, si las líneas de cada color llevan trayectorias muy diferentes nos vamos a encontrar un bokeh “nervioso” o deformado, no resultando demasiado agradable a la vista.

Luces de selenio

Extrapolando la información a los cuatro cuadrantes

Por tanto, lo que la gráfica está representando es la resolución de uno de los cuatro cuadrantes de la imagen; pero al existir simetría tanto vertical como horizontalmente podemos aplicar estos datos a todo el encuadre, ya que la información de los otros tres cuadrantes es exactamente la misma sólo que reflejada como muestra la siguiente gráfica que he confeccionado:

Lo que tenéis sobre este párrafo es una especie de representación de la definición del objetivo aplicada a toda la imagen. Como veis, serían las esquinas de la fotografía las zonas de la imagen más afectadas por la pérdida de nitidez y contraste; siendo el muestreo a 10 lpmm más o menos estable en todo el encuadre pero notándose cierta pérdida de calidad cuando hacemos el análisis a 30 lpmm debido a la mayor exigencia de resolución. Obviamente esta gráfica que os presento no es nada científico; pero es para dejaros claro que la información que nos dan es extrapolable a los cuatro cuadrantes de la imagen.

Por cierto, a estas alturas del artículo ya os habréis dado cuenta de por qué una óptica diseñada para formato 35mm (FX en Nikon) rinde también en cámaras equipadas con sensores APS-C, ¿verdad? Al fin y al cabo, lo que estamos haciendo en tal caso es emplear solamente la zona central del objetivo, que es donde mejor rendimiento ofrece.

Ferias y Fiestas Alcalá 2010

Otros ejemplos de curvas MTF

Después de todo lo visto, os habrá quedado claro que la situación ideal sería aquella en la que las líneas de las gráficas fueran completamente planas y todas ellas estuvieran en la parte superior de la gráfica porque esto implicaría que no hay pérdidas de contraste ni definición en todo el encuadre. Y aunque esto es algo imposible de diseñar porque todo sistema óptico implica una cierta pérdida de calidad por leve que sea, hay algunos objetivos cuyas gráficas resultan tan espectaculares como su precio.

Fijaos por ejemplo en las curvas MTF de un Nikon AF-S 600mm f/4 G VR (8600 euros) e imaginad la nitidez y la calidad que es capaz de ofrecer.

En cualquier caso, hay que tener en cuenta que los objetivos de gran apertura suelen viñetear bastante cuando abrimos su diafragma al máximo y debido a ello sus curvas MTF pueden parecer un tanto “pobres”. Sin ir más lejos, el conocido Nikkor AF-S 50mm f/1.4 G (370 euros) tiene una curva que no es ni mucho menos para tirar cohetes; pero es ahí cuando debemos de ser conscientes de que es un objetivo que rinde muy bien cerrando el diafragma un par de pasos y sólo debemos emplearlo a plena apertura bajo ciertas circunstancias.

Por contra, el Nikon AF-S DX 35mm f/1.8 G (200 euros) mantiene más o menos bien el tipo disparando a plena apertura como podéis apreciar en su gráfica y de ahí que las fotos realizadas con él siempre tengan un toque que a mí particularmente me gusta mucho; especialmente disparando a f/2.8; apertura a la cual el desenfoque siegue siendo acusado y las líneas de la gráfica seguramente aparezcan bastante más planas que a f/1.8.

Supongo que os habréis dado cuenta de que en todos los casos la gráfica MTF viene dada para sensores de 35mm (fijaos que el eje horizontal llega hasta los 22mm; que es más o menos la mitad de la diagonal de unos de esos sensores), de modo que aunque el objetivo esté diseñado para cámaras con sensor APS-C igualmente se expresa el rendimiento en todos los objetivos de la misma manera.

Quiere esto decir que en realidad la gráfica para esta última óptica debería de llegar sólo hasta los 15mm de longitud, ya que aproximadamente esa es la distancia que hay en un sensor APS-C entre el centro del mismo y una de las esquinas. Por tanto, la gráfica “útil” del Nikon AF-S DX 35mm f/1.8 G una vez recortada apropiadamente quedaría del siguiente modo:

Como podéis apreciar, la ganancia de rendimiento de un objetivo diseñado para formato completo al ser empleado en una cámara APS-C es más que evidente; ya que la caída más brusca de rendimiento suele tener lugar en esa zona exterior que diferencia ambos tipos de sensores. De hecho, si miráis la gráfica del 85mm del que hablábamos al principio del artículo y hacéis un corte imaginario por los 15mm os daréis cuenta de que las líneas de la gráfica quedan casi completamente planas.

Nada más que datos técnicos

De cualquier modo, todo esto está muy bien sobre el papel y nos puede ayudar a decidirnos por una u otra óptica antes de ir a la tienda. Sin embargo, la nitidez depende de muchos otros factores; y de nada servirá el más caro de los objetivos si por sistema disparamos a f/22 o tenemos un pulso tembloroso que arruina cualquier foto que no haya sido disparada a pleno sol. Los datos técnicos son muy útiles y a mí, como ingeniero, me llaman mucho la atención; pero en el mundillo de la fotografía lo más importante es sacarle partido a lo que tenemos y centrarnos tan sólo en sentir lo que nos rodea.

El lienzo de arena

Más información

Modulation Transfer Function (Ken Rockwell)

Understanding MTF (Luminous landscape)

Listado de objetivos Nikon para consulta de características (foro Nikonistas)

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

“D-lighting” y “Active D-Lighting”

Hay un sistema en las réflex Nikon llamado D-lighting (en Canon también existe en multitud de modelos bajo las denominaciones de Highlight Tone Priority y Automatic Lighting Optimizer) cuyo funcionamiento a grandes rasgos me gustaría comentaros hoy al ver que se trata de una tecnología que suscita bastantes dudas entre los usuarios después de ver algunos comentarios al respecto en este blog y numerosas consultas sobre este asunto en varios foros de fotografía.

Amanece (que no es poco)

¿Qué es el D-Lighting?

El D-lighting es un sistema que intenta expandir el rango dinámico de la cámara mediante el procesado de los datos del sensor una vez disparada la fotografía. Es decir, no se trata de un interruptor mágico que de repente mejora las prestaciones del sensor de la cámara; sino de una función implementada por software que, por tanto, podríamos realizar posteriormente “a mano” mediante un programa de revelado como Capture NX o Adobe Lightroom.

El truco del D-lighting consiste en oscurecer ligeramente las zonas más claras de la fotografía y aclarar un poco las zonas más oscuras de la misma tratando de evitar así los picos en los extremos del histograma; algo que, como os digo, no es nada que no podáis hacer en un ordenador mediante el postprocesado de la imagen.

La magia de la luz

El D-Lighting está presente en toda la gama de cámaras Nikon y lo habitual es emplearlo en imágenes captadas en formato RAW aprovechando que en dicho formato se captan más datos de los que el ojo es capaz de apreciar a simple vista, no siendo capaz de sacar mucho partido de las imágenes en JPG. Sin embargo, hay una pequeña contradicción en esto, ya que si disparamos en RAW el procesado lo haremos en nuestro ordenador una vez que estemos de regreso en casa y no tendremos ninguna necesidad de retocar las fotografías directamente en la cámara. Es más, si lo aplicamos a una imagen disparada en RAW, dicho archivo no se modificará sino que obtendremos una imagen JPG resultante del RAW procesado internamente.

¿Y el Active D-Lighting?

En las cámaras Nikon de gama media y alta, además del D-Lighting del que hablábamos anteriormente, también tenemos disponible la opción de emplear el Active D-Lighting (también denominado ADR; de Adaptative Dinamic Range) que se aplica directamente a la fotografía durante la toma de la misma en caso de que tengamos activada dicha función.

Sol y nubes

La diferencia en este caso es que parte del proceso del Active D-Lighting tiene lugar antes del disparo, ya que a grandes rasgos lo que se hace es subexponer ligeramente la imagen para así evitar quemar los tonos más claros y una vez que los datos están en la memoria de la cámara aclarar los tonos más oscuros para codificar finalmente la imagen en formato JPG y así evitar que esta quede demasiado apagada.

De hecho, para el buen funcionamiento del Active D-Lighting se recomienda emplear el modo de medición matricial, ya que al estar programado para funcionar sobre escenas con una iluminación global más o menos uniforme, no dará muy buenos resultados en caso de que hagamos una medición puntual sobre alguna de las zonas de luz de la escena (una bombilla, un claro en el cielo…).

De todos modos volvemos a lo de antes; y es que si disparamos en RAW podemos hacer esto mismo “a mano” si aplicamos a la exposición una pequeña compensación negativa para asegurarnos de no saturar los tonos más cercanos al blanco y luego en postproceso aclaramos ligeramente los tonos más oscuros.

D-Lighting, Active D-Lighting y el formato RAW

Aunque podemos emplear D-Lighting y Active D-Lighting disparando tanto en JPG como en RAW, si empleamos el formato RAW es una pérdida de tiempo utilizar cualquiera de los dos porque eso mismo lo podemos hacer en nuestro ordenador de una manera mucho más potente, precisa y personalizable como os decía anteriormente.

Hielo (26/12/2010)

El Active D-Lighting nos será de utilidad si disparamos en formato JPG, ya que en este caso lo habitual es emplear las imágenes según salen de la cámara sin ningún tipo de retoque posterior (es lo que se suele hacer en fotoperiodismo, donde segundos después de hacer la fotografía esta ya va de camino a la agencia gracias a la magia de los transmisores inalámbricos). Si lo empleamos con el formato RAW lo único que vamos a conseguir es una cierta subexposición dado que el aclarado posterior de los tonos oscuros de la imagen no queda reflejado en los datos de la imagen “en bruto” (que es lo que se graba en la tarjeta de memoria) y al final lo que vamos a lograr es una imagen ligeramente más oscura que si no empleáramos esta ayuda.

Por tanto, si disparáis exclusivamente en RAW (como yo) os recomiendo que desactivéis el Active D-Lighting y cualquier ajuste de la imagen lo hagáis íntegramente en vuestro ordenador empleando para ello el software adecuado. Sin embargo, disparando en JPG sí que es recomendable activar dicha ayuda en la cámara porque alguna vez nos puede salvar de quemar irremediablemente alguna zona amplia de la imagen. En cuanto al D-Lighting “a secas” la verdad es que disparando en RAW no le veo ninguna utilidad si empleamos un buen software de tratamiento de imágenes.

El trasluz del amanecer
La importancia de saber para qué sirven las cosas
Como os decía hace unos párrafos, lo que hace el D-lighting no es aumentar las prestaciones del sensor; sino “comprimir” el histograma de la fotografía de tal modo que no sobrepase los límites marcados por este vital componente de la cámara y evitando así en la medida de lo posible que tengamos zonas quemadas o totalmente a oscuras.

Lo que estos dos sistemas de ayuda que hemos visto hoy nos dan es, por tanto, un poco más de flexibilidad a la hora de enfrentarnos a escenas con fuertes contrastes lumínicos, pero no hay que hacer uso de ellos por sistema y sobre todo hay que ser conscientes de que no son útiles en todas las situaciones.

La calle Mayor

Habrá que hacer en este caso la misma observación que aparece en los manuales de los coches equipados con sistemas de control de tracción y que dice: “Advertencia: el ESP no cambia las leyes de la física”, porque al final las limitaciones de nuestro equipo fotográfico siempre están ahí y hay que tenerlas muy presentes.

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

¿Qué es la difracción?

Cuando el otro día hablábamos de cómo obtener la máxima nitidez posible en nuestras fotografías, os comenté que los objetivos tenían un rango focal en el que daban su rendimiento más óptimo y que si nos salíamos del mismo perderíamos algo de definición en la imagen obtenida.

Pues bien, resulta que aunque los objetivos profesionales (que son, por lo general, los más caros) están diseñados para dar una nitidez tremenda incluso empleando las aperturas más grandes, ningún modelo por muy de gama alta que sea se libra de un fenómeno físico inherente a la propia naturaleza ondulatoria de la luz y que hace que en las aperturas más cerradas perdamos bastante definición: la difracción.

Trasera Nikkor 50mm 1.8D (f/22)

Objetivo Nikon 50mm AF f/1.8 D con su diafragma cerrado a f/22

¿Qué es la difracción?

La difracción es un fenómeno que tiene lugar cuando las ondas que forman la luz atraviesan un orificio estrecho, ya que estas se deforman y a partir de ese punto no avanzarán en forma de haz; sino que “se abrirán” como los faros de un coche en mitad de la noche debido a que el orificio actúa como un nuevo emisor. Y claro, como ya os estaréis imaginando esto es lo que ocurre cuando empleamos las aperturas más pequeñas disponibles en un objetivo, puesto que estamos obligando a pasar a la luz por un agujero diminuto de un modo muy similar a lo mostrado por la siguiente imagen.

Difracción de una onda al pasar a través de un orificio de pequeño tamaño

Por tanto, la difracción hace que la luz ya no se concentre en un punto preciso, sino que se va a dispersar formando lo que se conoce como un disco de Airy; que no es más que la representación de esa deformación de la onda que veíamos en la figura anterior pero tal y como se proyectaría sobre el plano (el sensor de la cámara en este caso) perpendicular a su dirección de avance.

Disco de Airy

Siempre os digo que en fotografía todo es cuestión de equilibrio; así que si necesitamos capturar una imagen con una gran profundidad de campo para que todo aparezca enfocado, no todo es cerrar el diafragma a tope y disparar. Es verdad que cuanto más cerremos el diafragma más cosas aparecerán enfocadas en la fotografía, pero no es menos cierto que llegará un momento a partir del cual cerrar más el diafragma va a dar lugar a una pérdida general de nitidez por lo que os comentaba anteriormente.

Comparación visual: f/5.6 vs f/14

Fijaos en los siguientes dos recortes sin escalar de la zona central de una imagen que capté hace unos días con mi Nikon D40 y el objetivo Nikkor AF-S DX 35mm f/1.8 G. La primera está disparada a f/5.6 (apertura a la que, en teoría, esta óptica da la máxima nitidez) y en ella podréis ver que se aprecian todas las imperfecciones y los detalles del óxido presente en una valla de acero sobre la que daba el sol directamente:

Nikkor AF-S DX 35mm f/1.8 G @ f/5.6

Sin embargo, si hacemos esa misma fotografía a f/14 podréis comprobar que la pérdida de detalle es bastante notoria. Y que conste que todavía hice una fotografía más cerrando el diafragma a f/22 que ofrecía aun menos detalle, pero entre toma y toma el trípode se me desplazó un pelo y ya las fotografías no quedaron exactamente igual encuadradas, por lo que opté por usar la toma a f/14 para ilustrar la pérdida de nitidez porque el efecto de la nitidez ya era tan patente que se podía apreciar a simple vista.

Nikkor AF-S DX 35mm f/1.8 G @ f/14

La difracción en función del tamaño de sensor y su resolución

En función del tamaño del sensor de las cámaras y su resolución va a haber una determinada apertura a partir de la cual comenzaremos a notar el efecto de la difracción. Vamos a comprobar que cuanto más pequeño es el sensor y más alta la resolución la difracción aparecerá a aperturas cada vez mayores; pero en cualquier caso, estos valores no han de tomarse como una frontera infranqueable, sino como una apertura orientativa sobre la que nos podemos mover con tranquilidad si necesitamos profundidad de campo pero que no deberíamos superar ampliamente si pretendemos mantener el nivel de nitidez de la fotografía resultante.

Paisaje costero

Como vais a ver en la siguiente relación calculada gracias a una aplicación web disponible en Cambridge in Colour, tendremos más “margen de maniobra” en sensores de igual tamaño cuando su resolución es menor; y de ahí que las cámaras compactas con muchos megapixels presenten difracción practicamente en todas las aperturas (por ese mismo motivo no suelen cerrar el diafragma más allá de f/8).

Por cierto, tal vez esteis pensando que el tamaño de la apertura del diafragma es más pequeño cuanto más corta es la distancia focal del mismo; pero aunque esto es así (el diámetro de la apertura del diafragma viene dado por el cociente “distancia focal / número f” ) tened en cuenta que la distancia entre el diafragma y el sensor es mayor cuanto más larga es la distancia focal (pensad en lo largo que es un teleobjetivo de 300 mm y lo corto que es un gran angular, por ejemplo) y esa distancia provoca que el disco de Airy se proyecte sobre el sensor de una forma más difuminada de tal modo que una cosa se compensa con la otra y al final la difracción sólo es producto de la apertura empleada.

Bueno, vamos con los ejemplos que os decía antes y las respectivas aperturas a partir de las cuales comenzaría a aparecer la temida difracción:

  • Sensor Full Frame (36 x 24 mm) de 24 Mpixels: f/9.6
  • Sensor Full Frame  de 12 Mpixels: f/13.6
  • Sensor Nikon DX (24 x 16 mm) de 12 Mpixels: f/9
  • Sensor Nikon DX de 6 Mpixels: f/12.7
  • Sensor Canon APS-C (22 x 15 mm) de 18 Mpixels: f/7
  • Sensor Canon APS-C de 10 Mpixels: f/9.3
  • Sensor 4/3 (17 x 13 mm) de 12 Mpixels: f/7.2
  • Sensor de 1/1.8″ (7 x 5 mm; habitual en compactas) de 12 Mpixels: f/3

Como veis, el tener una cámara con un montón de megapixels no siempre es lo mejor, ya que superando una cierta relación superficie / resolución la difracción aparecerá cada vez a aperturas más amplias con la merma que ello supone de cara a la calidad de las imágenes (fijaos en el ejemplo de la compacta de 12 Mpixels). De hecho, los fotógrafos profesionales especializados en moda y naturaleza suelen emplear cámaras de medio formato cuyos sensores son mucho más grandes que el negativo “estándar” de 35mm y que están en otra dimensión en cuanto a calidad de imagen, resolución y precio.

De todos modos, volveremos a este interesante tema de resolución vs. calidad de imagen en un futuro artículo que estoy comenzando a preparar. Mientras tanto, haced muchas fotos y disfrutad de estos días de sol.

Más información (en inglés)

Wikipedia (Diffraction)

Wikipedia (Airy disk)

Ken Rockwell

Cambridge in colour

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

Soledad

(Del lat. solĭtas, -ātis).

1. f. Carencia voluntaria o involuntaria de compañía.

2. f. Lugar desierto, o tierra no habitada.

3. f. Pesar y melancolía que se sienten por la ausencia, muerte o pérdida de alguien o de algo.

4. f. Tonada andaluza de carácter melancólico, en compás de tres por ocho.

5. f. Copla que se canta con esta música.

6. f. Danza que se baila con ella.

La soledad de un centro comercial a media noche (III)

Los datos EXIF de una fotografía digital

Ya os he hablado alguna que otra vez de cosas como la apertura, la distancia focal, el tiempo de exposición, la sensibilidad ISO… Pues bien, los datos EXIF (exchangeable image file format) no son más que esos parámetros (junto con muchos otros más) grabados como información adjunta en cada fotografía, de tal modo que podemos disponer al instante de los datos de esa toma para poder comprender bien dónde estuvo el error o el acierto a la hora de capturar una instantánea.

Los datos EXIF de una fotografía digital son el mejor modo de aprender de nuestros fallos e ir mejorando como fotógrafos. Desde luego, no es un concepto nuevo, pues cuando las cámaras de carrete dominaban el mundo, los fotógrafos iban apuntando en una libreta los tiempos de exposición, aperturas y demás parámetros empleados en cada toma para luego al revelar ver qué había fallado en determinada imagen y cómo podría haberse corregido.

Los datos grabados varían con cada cámara; siendo, a nivel general, las cámaras réflex las que mayor variedad de información guardan. De todos modos, incluso las cámaras de los teléfonos móviles almacenan algún tipo de información básica sobre la toma, por lo que os podéis imaginar que esto de lo que os estoy hablando hoy es algo de lo más normal.

Vamos a tomar como ejemplo la siguiente imagen tomada con la D40 hace unos días para ver sus datos EXIF y así hacernos una idea mejor de lo que podemos consultar en ellos:

Jugando al escondite

Una de las cosas que más me gustan de Flickr es que podemos consultar los datos de una fotografía sin más que pulsar en el enlace correspondiente, aunque también podemos ver los datos EXIF de una imagen en Windows si pulsamos con el botón derecho sobre ella, elegimos “propiedades” y a continuación activamos la opción “avanzadas”. Sea como sea, os voy a pegar a continuación la información principal que vamos a obtener de la imagen anterior y así comentamos sobre algo tangible:

Cámara: Nikon D40
Exposición: 0,002 sec (1/500)
Aperture: f/8.0
Lente: 18 mm
Exposición: 0.00
Velocidad ISO: 200
Tendencia de exposición: -2/3 EV
Flash: Auto, Fired, Return not detected

File Size: 1943 kB
File Type: JPEG
MIME Type: image/jpeg
Image Width: 2958
Image Height: 1967
Encoding Process: Baseline DCT, Huffman coding
Bits Per Sample: 8
Color Components: 3
X-Resolution: 240 dpi
Y-Resolution: 240 dpi
Software: Nikon Transfer 1.3 W
Date and Time (Modified): 2009:03:25 21:27:45
Exposure Program: Aperture-priority AE
Date and Time (Original): 2009:03:25 12:26:21.10+01:00
Date and Time (Digitized): 2009:03:25 12:26:21
Max Aperture Value: 3.5
Metering Mode: Multi-segment
Light Source: Unknown
User Comment: luipermom@*****.*** (editado para evitar mensajes de spam)
Sub Sec Time Original: 10
Sub Sec Time Digitized: 10
Sensing Method: One-chip color area
CFAPattern: [Blue,Green][Green,Red]
Custom Rendered: Normal
Exposure Mode: Auto
White Balance: Auto
Digital Zoom Ratio: 1
Focal Length In35mm Format: 27 mm
Scene Capture Type: Standard
Gain Control: None
Contrast: Normal
Saturation: Normal
Sharpness: Normal

Como veis, el primer bloque es el que contempla los parámetros más básicos de la imagen, y con ellos es más que suficiente para hacernos una buena idea de los parámetros técnicos que se han empleado en su captura. Pero no acaba aquí la cosa ni mucho menos, pues a continuación tenemos un extenso segundo bloque (que he cortado más o menos por la mitad) en el que hay información complementaria sobre aspectos más técnicos como la compresión de la imagen resultante, el software empleado, el patrón de colores del sensor de la cámara, la apertura máxima del objetivo… y un parámetro bastante interesante que es un breve texto que podemos definir en nuestra cámara de tal modo que todas las fotografías lo lleven adjunto. En mi caso tengo puesta mi dirección de mail para, en caso de dudas, poder probar la autoría de una determinada fotografía.

Como podéis ver los datos EXIF son una poderosa herramienta para poder conocer las “interioridades” de una fotografía, así que no menospreciéis su poder y cuando veáis  una fotografía que os llame la atención echadle un vistazo a estos datos porque os pueden dar alguna que otra pista sobre cómo la ha realizado su autor.

¡Un saludo!

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia

El síndrome reflexivo

Me he tomado la libertad de denominar síndrome reflexivo a algo que me está ocurriendo desde hace unas semanas con respecto a mi afición por la fotografía. No es nada que me haya pillado por sorpresa, pues ya había leído por ahí cosas sobre este tema alguna que otra vez y sé que aparece prácticamente en todos los usuarios de cámaras compactas que han dado el salto a la réflex, pero no deja de sorprenderme que aquello que hace cosa de cuatro meses creía imposible al final ha acabado sucediendo.

Nikon D40 + Nikkor 50mm 1.8D

La cosa es bien simple: consiste ni más ni menos en que cuando te habitúas a utilizar la cámara réflex, el día que coges de nuevo la compacta te parece que es de juguete. En mi caso, hace poco me la llevé al trabajo y al regresar a casa me fui a dar una vuelta con ella en el bolsillo. Hice alguna que otra foto (ninguna era gran cosa, la verdad) pero al sostenerla en las manos la sentía tan pequeña y ligera que no podía evitar sentir una extraña sensación.

Además, me empecé a preguntar una serie de cosas mientras la utilizaba: ¿Dónde está mi anillo de zoom? ¿Por qué tarda tanto en enfocar? ¿Cómo es que el obturador no hace ningún ruido al disparar? ¿Por qué el visor es tan oscuro?…

Y encima, para redondear del todo la experiencia, al llegar a casa y descargar las fotografías en el ordenador aluciné al comprobar la pérdida de definición y el elevado nivel de ruido que aparece en las fotografías de esta pequeña cámara comparada con la réflex.

Supongo que algunos de vosotros pensaréis que soy idiota o algo así, pero os aseguro que de un tiempo a esta parte me cuesta horrores hacer fotos con una compacta; y del mismo modo que antes la llevaba siempre en el bolsillo “por si veía alguna escena chula para fotografiar”, ahora en muchas ocasiones me cojo la bolsa de fotografía y me voy con la réflex de paseo pensando que “como vea una foto chula, con la compacta va a perder mucho”.

Y ya sé que esto parece chocar contra lo que os decía recientemente acerca de que ha de primar más el arte en una fotografía que la técnica; pero, qué queréis que os diga: lo que ocurre es que me he habituado hasta tal punto a disparar con la réflex que se me hace muy raro tratar de fotografiar algo con otro tipo de cámara.

¡Qué cosas, oiga!