Regulación de las curvas de los ventiladores de un PC

De un tiempo a esta parte, concretamente desde que monté mi último ordenador de sobremesa, me he dado cuenta de la importancia de la ventilación en este tipo de equipos «potentes». Como hasta ahora no había tenido una tarjeta gráfica de cierta entidad y casi nunca había tenido problemas de calentones informáticos, era algo que siempre dejé de serie en mis ordenadores anteriores, pero en esta ocasión ha sido un punto importante en su diseño y de eso precisamente quería hablaros hoy.

Empecemos con una visión global de las cosas; y es que dentro de un PC actual hay dos elementos que necesitan refrigeración adicional: la tarjeta gráfica y la CPU. En los albores de la informática esto rara vez era necesario porque el número de transistores y su velocidad de funcionamiento eran relativamente bajos, pero con la carrera por el rendimiento cada vez estamos metiendo más potencia de cálculo en chips que consumen un montón de electricidad, lo que conduce a unas temperaturas de funcionamiento cada vez más elevadas. Y claro, si no somos capaces de disipar ese calor, nuestros preciados y carísimos componentes electrónicos se achicharrarían en pocos minutos.

Ahí es donde entran en acción los disipadores, que sirven para transferir el calor que se genera en el chip al aire circundante. Los primeros eran simplemente unas aletas de aluminio y ahora, para obtener un mejor rendimiento de refrigeración, aunque se siguen basando en el mismo principio de funcionamiento añaden ventiladores cada vez más grandes para refrescar esas aletas y que así puedan hacer su trabajo.

La tarjeta gráfica es, con diferencia, el componente que más calor disipa a día de hoy en un ordenador personal. Una tarjeta de gama media actual (mi RTX 2060 sin ir más lejos) llega a consumir unos 200 vatios ella solita cuando se le exige el máximo rendimiento, dispándose buena parte de los mismos en forma de calor, por lo que las gráficas actuales suelen contar con varios ventiladores y un disipador de tal tamaño que podríamos hacer unas salchichas sobre él.

La CPU por su parte no consume tanto (un procesador de gama media como el Ryzen 7 3700x que tengo ahora mismo consume unos 80 vatios de pico) pero también necesita un disipador hermoso y un ventilador de buen diametro para mantener su temperatura a raya porque esta se eleva con gran rapidez al ser un componente de pequeño tamaño. Para que os hagáis una idea, el límite de funcionamiento de mi microprocesador son 95 grados centígrados, que es prácticamente la temperatura a la que hierve el agua en un cazo, por lo que llevado al extremo os podéis imaginar el calorazo que desprende ese pequeño cuadrado metálico de 5 x 5 cm.

Pues bien, lo que hacen los sistemas de refrigeración de estos dos componentes cuando están en funcionamiento es contener la temperatura a base de intercambiar calor con el aire que hay dentro de la caja del PC, de modo que también es importante extraer el aire caliente de ahí dentro sustituyéndolo por aire fresco para que los disipadores que os decía hace un momento puedan hacer bien su trabajo. Y de eso se encargan los ventiladores de la caja del ordenador, que es otro de los puntos de este artículo, pues me ha llevado tiempo regularlos hasta dejar este aspecto a mi gusto y me gustaría contaros cómo lo he hecho.

Una vez descritos los dos elementos principales generadores de calor en un ordenador actual y vista la importancia de hacer circular el aire dentro de la caja vamos a hablar de la regulación de cada uno de estos tres elementos.

Tarjeta gráfica

Como os decía antes, éste suele ser el elemento que más calor genera dentro de la caja de un PC actual. No hay más que ver que la temperatura de la caja apenas se incrementa durante los benchmarks realizados al microprocesador pese a que este se ponga a unos 80 grados durante un buen rato, pero se eleva con cierta rapidez cuando es la tarjeta gráfica la que trabaja al límite de sus posibilidades como cuando lanzo el popular test FurMark. o le estoy dando caña un buen rato a Cyberpunk 2077.

Muchas gráficas tienen prefijada la opción de tener sus ventiladores parados hasta llegar a cierta temperatura (la mía sin ir más lejos). A diferencia de la BIOS del PC a estas normalmente no se les puede hacer poder variar el comportamiento de la refrigeración por hardware, pero sí que podemos hacerlo desde Windows con alguna aplicación del fabricante de la tarjeta o bien con la que para mi gusto es la que mejor funciona: MSI Afterburner.

En mi caso, como podéis ver en la curva que hay sobre estas líneas, prefiero que los ventiladores estén funcionando a baja velocidad desde el arranque y que luego progresivamente vayan subiendo de velocidad para pegar un último sprint si nos acercamos a los 80 grados, que empieza a ser ya una temperatura un poco excesiva. Con la configuración que veis la gráfica se me pone como mucho a 72 grados si estoy un par de horas dándole caña a juegos muy exigentes (Quake II RTX es un buen ejemplo de ello al estar toda la iluminación generada mediante Raytracing) o haciendo algún test de estrés de 3D Mark. Comentar que a partir de 83 grados la 2060 comienza a hacer thermal throttling para autoprotegerse, de modo que no conviene acercarse mucho a ese límite.

Microprocesador

Aquí la estrategia es también similar, pero en este caso como el ventilador del disipador que le he colocado recientemente es realmente silencioso he sido algo más permisivo y parto de una velocidad en idle más alta, ya que eso me permite aguantar pequeñas subidas de temperatura sin que lleguemos a tener que incrementar su velocidad. En cualquier caso, al contrario que en el Writh Prism que trae de serie el 3700x donde los cambios de velocidad por pequeños que fueran se notaban un montón, en el caso del Nox Hummer H212 que tengo ahora mismo hay que afinar mucho el oído para notar que el ventilador está acelerando o decelerando.

A diferencia de la tarjeta gráfica esta curva es directamente configurable desde la BIOS del PC, y aunque cada fabricante tiene su sistema, todos se basan en una serie de puntos sobre unas ejes de temperatura/velocidad de ventilador; de modo que ajustarlo es algo bastante intuitivo.

Aquí parto de un 50% mientras el micro no supere los 40 grados, y ya a partir de ahí voy incrementando velocidad hasta llegar a los 70 grados, momento en el que entraríamos en un punch final en el que a 75 grados o más iríamos al 100% de velocidad. Esto sí que he llegado a verlo en tests tipo CPU-Z y similares, pero por lo que veo no pasa de los 80 grados en estos casos extremos que os digo, por lo que todavía entramos dentro de lo que se considera normal para estos micros de AMD y más si estas temperaturas se alcanzan de una forma esporádica y puntual. En este caso la fiesta del thermal throttling comienza a los 95 grados, de modo que andamos con margen de movimiento incluso en las situaciones más extremas.

Sistema

El sistema es la temperatura interior de la caja del ordenador. Como os decía antes, en mi caso viene determinada principalmente por la carga de la tarjeta gráfica puesto que el microprocesador, debido a que tiene el ventilador trasero justo detrás del disipador, expulsa el aire caliente rápidamente al exterior. Sin embargo, la RTX 2060 evacua una gran cantidad de calor a través de su propio disipador que sube hacia la parte superior por el interior de la caja a diferencia de las tarjetas gráficas con ventilación «tipo turbina» que expulsan el aire directamente al exterior a través de unos conductos específicos que salen a la parte trasera del PC a cambio de hacer un ruido exagerado.

Tengo un total de 5 ventiladores de caja de 120 mm controlados desde la BIOS por esta función: dos de ellos en el frontal metiendo aire, dos en la parte superior sacando y otro más en la parte trasera también sacando el aire caliente (mi placa sólo tiene un puerto SYS_FAN, de modo que para poder conectarlos y que regulen he hecho uso de un hub específico para ventiladores PWM). Puesto que el aire al calentarse tiende a subir, la estrategia más adecuada es meter aire por la parte inferior de la caja y expulsarlo por la superior, que es lo que he hecho con este setup.

Estos ventiladores hacen algo de ruido cuando están a muchas RPM, por lo que mi estrategia ha sido en este caso que estén al 29% (unas 930 RPM) mientras la caja esté por debajo de 40 grados centígrados, que es la situación que se da siempre que no esté haciendo un uso intensivo de la gráfica, que a partir de ahí se eleve hasta llegar a un 60% a 65 grados y que si pasamos de esa temperatura incremente su velocidad hasta llegar a sus máximas RPMs a 80 grados, que sería una locura ya que los disipadores no serían capaces de refrigerar nada ahí dentro.

Esta refrigeración es la más laboriosa de regular, ya que a diferencia de micro y gráfica tiene bastante inercia y tanto las subidas como las bajadas de temperatura llevan unos minutos en notarse y, por tanto, las pruebas a realizar llevan bastante más tiempo. El micro tarda apenas unos segundos en llegar a su temperatura estable cuando estamos haciendo un test de estrés y en el caso de la gráfica puede llevar algo más, pero en apenas tres o cuatro minutos ya se empieza a estabilizar. La caja, para que estabilice su temperatura con el PC trabajando fuerte puede llevar del orden de 20 minutos, así que como os digo, dejar la curva a tu gusto va a requerir algo de paciencia.

En mi caso la temperatura de la caja se estabiliza sobre los 55 grados cuando gráfica y micro están trabajando a la vez a máxima potencia, de modo que estos cinco ventiladores giran a unas 1300 RPM y el ruido generado es más o menos llevadero. Cuando sí que hacen bastante ruido es justo en el instante de arrancar el PC, puesto que por defecto se ponen al 100% de velocidad (1800 RPM) durante un par de segundos hasta que se cargan las rutinas de la BIOS y a partir de ahí ya regulan mediante la curva que os mostraba antes, escuchándose nada más que un ligero zumbido si estamos en la misma habitación del PC.

Como os digo, usando durante horas aplicaciones que hagan un uso intensivo de micro y tarjeta gráfica, las temperaturas que obtengo se estabilizan en torno a 55 grados para la caja, 65 para la CPU y 70 para la gráfica sin que el ruido generado por la refrigeración sea especialmente molesto.

No son temperaturas altas para lo que se estila hoy en día en este tipo de componentes, pero como el frontal de mi caja es bastante cerrado soy consciente de que si tuviera un frontal de rejilla entraría más aire fresco y la temperatura de la caja bajaría unos grados y por tanto también la de los dos componentes principales cuyos disipadores estarían algo más frescos. Supongo que un día de estos me dará la ventolera de cambiar de caja aunque sólo sea por el bendito «cacharreo» (y sabéis que si estoy diciendo esto es porque ya lo tengo más que pensado y planeado).

¡Hasta el próximo artículo!

Refrigeración líquida vs. refrigeración por aire

En general, se considera que una refrigeración líquida para la CPU es más eficiente que las habituales de disipador + ventilador debido a que el agua tiene la propiedad de transportar el calor más rápido de un sitio a otro, de modo que el líquido que da vueltas en el circuito se calienta con facilidad en la bomba que está en estrecho contacto con el microprocesador pero también se enfría con rapidez en el radiador que refrigera un ventilador haciendo así que su temperaratura no se dispare. Igual que en un coche con motor de combustión, vamos.

Todo lo anterior junto con el factor «molar» (a primera vista las refrigeraciones líquidas son más cool que las de aire) hacen que mucha gente opte por uno de estos sistemas como si fueran la panacea; pero aun así, con el tiempo te vas dando cuenta de algunas desventajas y empiezas a pensar, como ha sido mi caso, que una refrigeración por aire tampoco está tan mal.

Entre los componentes del PC que monté a primeros de año estaba una refrigeración líquida AIO (All In One) de Cooler Master con radiador de 120mm, que desde mi punto de vista funciona a las mil maravillas y mantiene la temperatura del procesador bajo control de una forma muy estable gracias a la mayor inercia térmica del líquido refrigerante.

En el caso de mi placa base, una MSI con chipset B450, tengo dos conectores de ventilador, ambos regulables por PWM o por DC: CPU_FAN y SYS_FAN. Al primero de ellos se enchufa habitualmente el ventilador del disipador de la CPU; mientras que al segundo se suele conectar el ventilador trasero de la caja encargado de sacar el aire caliente de la misma. Luego ya es cuestión de regular sus curvas de funcionamiento en función de la relación temperatura/ruido que queramos obtener.

En el caso de optar por una refrigeración líquida la estrategia es diferente. Aquí se trata de que la bomba haga circular al líquido a una velocidad constante por el circuito, por lo que esta se suele conectar al SYS_FAN y se deja a velocidad fija, normalmente a 12 Vdc o bien al 100% de PWM, con la intención de que quede girando a su velocidad nominal. Por su parte el ventilador del radiador es que el que va a ir conectado a CPU_FAN y regulado mediante su curva PWM, de tal manera que si el microprocesador está frío el ventilador gire a baja velocidad y si la temperatura se incrementa lo haga también la velocidad del ventilador con objeto de enfriar más rápidamente el líquido en el radiador.

¿Qué ocurre en el caso de que sólo dispongamos de estos dos conectores de ventilador? Pues que si tenemos otros ventiladores adicionales en la caja para refrigerar su interior, o bien los compramos con adaptador MOLEX para que vayan a 12 voltios fijos, los regulamos mediante un reostato externo (este sistema se considera ya algo viejuno; sobre todo ahora que las cajas de los PCs no traen disqueteras ni bahías para CD-ROM) o los adaptamos mediante algún tipo de hub PWM para que vayan sincronizados con la velocidad del ventilador del radiador, cosa nada recomendable porque las continuas subidas y bajadas casi instantáneas de éste nos pueden volver locos por el incremento y decremento de la sonoridad global del PC.

Y luego está el problema clásico de las refrigeraciones líquidas: las pérdidas de agua. Y es que, hasta donde yo sé, ninguna refrigeración líquida emplea un líquido dieléctrico para funcionar, siendo todas de base agua con mayor o menos presencia de etilenglicol. Es decir, que como se nos fisure un tubo o se salga un racor con el ordenador en marcha nos podemos ir despidiendo de la placa base y/o la tarjeta gráfica y/o fuente de alimentación.

Al principio veía la cosa muy segura, pero a base de leer casos de fugas en refrigeraciones líquidas con unos cuantos años ya a sus espaldas empecé a pensar en hacerme con una refrigeración por aire, la cual tiene otro ventaja adicional y es que si se nos para el ventilador del disipador éste último puede seguir refrigerando algo de forma pasiva (sobre todo si el flujo de aire dentro de la caja es adecuado y consigue que se mueva algo de aire entre sus aletas) pero si se nos avería la bomba de una refrigeración líquida el micro se nos va a plantar en temperaturas perjudiciales para su salud en menos que canta un gallo y con posibilidad además de que por efecto del calentón uno de los racores de la bomba se dilate y acabemos además con la temida fuga de líquido.

Aún así, las refrigeraciones líquidas tienen otra ventaja que no he comentado hasta ahora y es que el calor del microprocesador lo sacan directamente fuera de la caja, ya que los ventiladores de los radiadores se suelen configurar para que eliminen ese calor hacia el exterior (y si el radiador está colocado en la parte alta de la caja de paso ayudan a sacar el aire caliente que hay acumulado dentro de la misma). La cosa es que cuando usas una refrigeración por aire, el disipador se calienta y por tanto también el interior de la caja puesto que su ventilador lo hace circular por su interior, de modo que es un motivo más para asegurar una buena circulación de aire dentro del PC con los ventiladores de la caja si no queremos que se eleven las temperaturas de sus componentes internos.

Por tanto, sopesando todo esto que os he contado decidí probar la refrigeración por aire que ofrece el propio disipador que viene con el AMD Ryzen 7 3700x (el famoso y colorido Wraith Prism) y comprando un juego de ventiladores regulables por PWM así como un HUB para poder conectar varios de ellos (cinco en concreto) al conector SYS_FAN de la placa base.

Tras unas pruebas iniciales me di cuenta de que el Wraith Prism es un avión a punto de despegar cuando pasas algún benchmark de CPU o si te tiras un buen rato jugando a algún juego muy exigente con el microprocesador y la tarjeta gráfica. Sus 3750 RPM máximas hacían un ruido tremendo aunque cierto es también que mantenía las temperaturas del microprocesador más o menos en los márgenes que jugaba la líquida que tenía puesta hasta ese momento.

¿Y por qué tanta velocidad de giro? Bueno, el problema es que es un disipador de perfil bajo, de modo que además de que el aire va «de arriba a abajo» impulsado con el ventilador, chocando por tanto con la placa base y disminuyendo su capacidad de refrigeración, las aletas de aluminio que tiene son más pequeñas que las del típico disipador «de torre» que habréis visto en multitud de PCs. Lo que han hecho en AMD es suplir ese menor rendimiento que viene condicionado por su diseño con un caudal de aire muy bestia, pero claro, los dbs también se disparan.

Buscando un poco en foros y demás encontré un modelo de disipador + ventilador en formato torre que funcionaba muy bien y además entraba en mi caja, que al ser para placas microATX no es demasiado ancha y está limitada a una altura máxima del conjunto de unos 15 cm; medida que sobrepasan muchos modelos de Noctua y Cooler Master equipados con ventiladores de hasta 14 cm a los que hay que sumar la altura de la base y el primer tramo de los heatpipes que llevan incorporados.

El modelo que compré fue el Hummer H-212 de Nox, que sale por unos 30 euros y es sumamente silencioso, también gracias a su ventilador cónico de 120 –> 92 mm que sopla sobre un disipador de aletas de aluminio y heatpipes de cobre a una velocidad máxima de 1600 RPM. He de decir que me ha sorprendido para bien, porque las temperaturas están a la par con el Wraith Prism pero el ruido que hace a máxima velocidad es una fracción del modelo de AMD y además en idle es prácticamente inaudible.

Como podéis ver en la imagen anterior, la disposición del conjunto disipador-ventilador es tal que el aire fresco entre por el frontal de la caja, lo recoge el ventilador, lo hace pasar por el disipador donde se calienta y a continuación sale por el ventilador trasero. Puede que algo de aire se derive hacia los dos ventiladores superiores, pero estos están principalmente para sacar el aire caliente que se acumula en la caja cuando la tarjeta gráfica está trabajando a plena potencia; si bien de esto creo que prepararé un artículo específico porque me parece un tema interesante.

Por tanto, y para resumir un poco todo lo comentado en este artículo, aunque las refrigeraciones líquidas son muy pintonas y funcionan muy bien creo que no van a conseguir barrer del mapa a las refrigeraciones por aire; ya que estas tanto por funcionalidad como sobre todo por seguridad tienen bastantes ventajas.

Medición fotométrica empleando objetivos sin CPU

Las cámaras réflex Nikon pertenecientes a la gama profesional tienen una característica que me parece muy útil: la posibilidad de calcular la exposición correcta sin necesidad de que el objetivo cuente con una CPU que se comunique directamente con la electrónica de la cámara.

Eso se hace mediante un «saliente» que posee el anillo de diafragmas de las ópticas antiguas que indica a la cámara la apertura seleccionada en función de su posición. Posición que la cámara interpreta gracias a una pequeña pestaña que posee en la parte externa de su montura y que gira solidariamente con el anillo de diafragmas del objetivo utilizado.

De hecho, esto que os comento no es nada nuevo ya que antes de la aparición de los objetivos con CPU (que se distinguen por los pequeños pines metálicos de sus bayonetas) es lo que se hacía para saber a qué diafragma se iba a disparar la fotografía y hacer así los cálculos de exposición correspondientes. Sin ir más lejos, mi Nikon EM posee este acoplamiento que os digo como podéis apreciar en la parte superior derecha de la montura en la siguiente imagen:

Nikon EM (1979)

Ya sabéis que las cámaras réflex siempre emplean la máxima apertura disponible a la hora de enfocar y componer la imagen, por lo que de algún modo necesitan saber a qué apertura se cerrará el diafragma en el momento del disparo. En las cámaras actuales esto se hace mediante los diales de control del propio cuerpo; pero en los objetivos más antiguos se hacía mediante el anillo de diafragmas que poseen en la base del barrilete y que podéis ver en las fotos de alguna de mis ópticas.

AF Zoom Nikkor 35-70mm f/3.3~4.5S MACRO MK I (II)

Girando ese anillo seleccionábamos la apertura a la que íbamos a hacer nuestra fotografía y de ahí que la cámara necesitara algún medio mecánico para saber en qué posición se encontraba. Precisamente este sistema de notificación física de la posición del anillo de diafragmas es lo que se ha eliminado en las cámaras digitales más sencillas con objeto de ahorrar costes y el motivo por el que usando objetivos antiguos esos cuerpos no son capaces de utilizar el exposímetro.

Eso sí, aunque tengamos una cámara de gama alta que nos permita usar el exposímetro en objetivos sin CPU debemos de indicarle un par de parámetros para que pueda calcular con precisión la exposición: la distancia focal del objetivo a utilizar y la apertura máxima del mismo.

Si introducimos estos dos datos correspondientes a nuestro objetivo (en la D300 disponemos de nueve posiciones diferentes de memoria para ello) podremos disparar nuestras fotografías empleando la medición matricial de la luz, lo que garantiza en la mayoría de los casos una exposición equilibrada incluso en situaciones de iluminación complicadas porque, de hecho, ese es uno de los puntos fuertes de las cámaras Nikon.

Abonando el campo

Si empleaba un objetivo sin CPU en mi D40 tenía que calcular la exposición «a ojo» consultando el exposímetro en la pantalla de la cámara después de cada disparo y haciendo las correcciones pertinentes hasta lograr la exposición deseada. Sin embargo, en la D300 puedo disparar con un objetivo sin CPU sabiendo que la fotografía estará correctamente expuesta. De hecho, me sorprender ver cómo incluso imágenes tan complicadas de exponer de forma equilibrada como las captadas a través de mi ojo de pez quedan perfectas haga lo que haga.

En mi propio encuadre

En definitiva: si disponéis en vuestra cámara de esta característica y contáis en vuestro arsenal con un objetivo antiguo, haced uso de ella y veréis lo bien expuestas que quedan las imágenes. Eso sí, en caso de que no contéis con este tipo de medición tampoco os preocupéis porque lo mejor de las cámaras digitales es que podemos disparar veinte fotografías cambiando diversos parámetros hasta dar con el resultado deseado.

* Todos los artículos de este tipo en https://luipermom.wordpress.com/fotografia