Refrigeración líquida vs. refrigeración por aire

En general, se considera que una refrigeración líquida para la CPU es más eficiente que las habituales de disipador + ventilador debido a que el agua tiene la propiedad de transportar el calor más rápido de un sitio a otro, de modo que el líquido que da vueltas en el circuito se calienta con facilidad en la bomba que está en estrecho contacto con el microprocesador pero también se enfría con rapidez en el radiador que refrigera un ventilador haciendo así que su temperaratura no se dispare. Igual que en un coche con motor de combustión, vamos.

Todo lo anterior junto con el factor «molar» (a primera vista las refrigeraciones líquidas son más cool que las de aire) hacen que mucha gente opte por uno de estos sistemas como si fueran la panacea; pero aun así, con el tiempo te vas dando cuenta de algunas desventajas y empiezas a pensar, como ha sido mi caso, que una refrigeración por aire tampoco está tan mal.

Entre los componentes del PC que monté a primeros de año estaba una refrigeración líquida AIO (All In One) de Cooler Master con radiador de 120mm, que desde mi punto de vista funciona a las mil maravillas y mantiene la temperatura del procesador bajo control de una forma muy estable gracias a la mayor inercia térmica del líquido refrigerante.

En el caso de mi placa base, una MSI con chipset B450, tengo dos conectores de ventilador, ambos regulables por PWM o por DC: CPU_FAN y SYS_FAN. Al primero de ellos se enchufa habitualmente el ventilador del disipador de la CPU; mientras que al segundo se suele conectar el ventilador trasero de la caja encargado de sacar el aire caliente de la misma. Luego ya es cuestión de regular sus curvas de funcionamiento en función de la relación temperatura/ruido que queramos obtener.

En el caso de optar por una refrigeración líquida la estrategia es diferente. Aquí se trata de que la bomba haga circular al líquido a una velocidad constante por el circuito, por lo que esta se suele conectar al SYS_FAN y se deja a velocidad fija, normalmente a 12 Vdc o bien al 100% de PWM, con la intención de que quede girando a su velocidad nominal. Por su parte el ventilador del radiador es que el que va a ir conectado a CPU_FAN y regulado mediante su curva PWM, de tal manera que si el microprocesador está frío el ventilador gire a baja velocidad y si la temperatura se incrementa lo haga también la velocidad del ventilador con objeto de enfriar más rápidamente el líquido en el radiador.

¿Qué ocurre en el caso de que sólo dispongamos de estos dos conectores de ventilador? Pues que si tenemos otros ventiladores adicionales en la caja para refrigerar su interior, o bien los compramos con adaptador MOLEX para que vayan a 12 voltios fijos, los regulamos mediante un reostato externo (este sistema se considera ya algo viejuno; sobre todo ahora que las cajas de los PCs no traen disqueteras ni bahías para CD-ROM) o los adaptamos mediante algún tipo de hub PWM para que vayan sincronizados con la velocidad del ventilador del radiador, cosa nada recomendable porque las continuas subidas y bajadas casi instantáneas de éste nos pueden volver locos por el incremento y decremento de la sonoridad global del PC.

Y luego está el problema clásico de las refrigeraciones líquidas: las pérdidas de agua. Y es que, hasta donde yo sé, ninguna refrigeración líquida emplea un líquido dieléctrico para funcionar, siendo todas de base agua con mayor o menos presencia de etilenglicol. Es decir, que como se nos fisure un tubo o se salga un racor con el ordenador en marcha nos podemos ir despidiendo de la placa base y/o la tarjeta gráfica y/o fuente de alimentación.

Al principio veía la cosa muy segura, pero a base de leer casos de fugas en refrigeraciones líquidas con unos cuantos años ya a sus espaldas empecé a pensar en hacerme con una refrigeración por aire, la cual tiene otro ventaja adicional y es que si se nos para el ventilador del disipador éste último puede seguir refrigerando algo de forma pasiva (sobre todo si el flujo de aire dentro de la caja es adecuado y consigue que se mueva algo de aire entre sus aletas) pero si se nos avería la bomba de una refrigeración líquida el micro se nos va a plantar en temperaturas perjudiciales para su salud en menos que canta un gallo y con posibilidad además de que por efecto del calentón uno de los racores de la bomba se dilate y acabemos además con la temida fuga de líquido.

Aún así, las refrigeraciones líquidas tienen otra ventaja que no he comentado hasta ahora y es que el calor del microprocesador lo sacan directamente fuera de la caja, ya que los ventiladores de los radiadores se suelen configurar para que eliminen ese calor hacia el exterior (y si el radiador está colocado en la parte alta de la caja de paso ayudan a sacar el aire caliente que hay acumulado dentro de la misma). La cosa es que cuando usas una refrigeración por aire, el disipador se calienta y por tanto también el interior de la caja puesto que su ventilador lo hace circular por su interior, de modo que es un motivo más para asegurar una buena circulación de aire dentro del PC con los ventiladores de la caja si no queremos que se eleven las temperaturas de sus componentes internos.

Por tanto, sopesando todo esto que os he contado decidí probar la refrigeración por aire que ofrece el propio disipador que viene con el AMD Ryzen 7 3700x (el famoso y colorido Wraith Prism) y comprando un juego de ventiladores regulables por PWM así como un HUB para poder conectar varios de ellos (cinco en concreto) al conector SYS_FAN de la placa base.

Tras unas pruebas iniciales me di cuenta de que el Wraith Prism es un avión a punto de despegar cuando pasas algún benchmark de CPU o si te tiras un buen rato jugando a algún juego muy exigente con el microprocesador y la tarjeta gráfica. Sus 3750 RPM máximas hacían un ruido tremendo aunque cierto es también que mantenía las temperaturas del microprocesador más o menos en los márgenes que jugaba la líquida que tenía puesta hasta ese momento.

¿Y por qué tanta velocidad de giro? Bueno, el problema es que es un disipador de perfil bajo, de modo que además de que el aire va «de arriba a abajo» impulsado con el ventilador, chocando por tanto con la placa base y disminuyendo su capacidad de refrigeración, las aletas de aluminio que tiene son más pequeñas que las del típico disipador «de torre» que habréis visto en multitud de PCs. Lo que han hecho en AMD es suplir ese menor rendimiento que viene condicionado por su diseño con un caudal de aire muy bestia, pero claro, los dbs también se disparan.

Buscando un poco en foros y demás encontré un modelo de disipador + ventilador en formato torre que funcionaba muy bien y además entraba en mi caja, que al ser para placas microATX no es demasiado ancha y está limitada a una altura máxima del conjunto de unos 15 cm; medida que sobrepasan muchos modelos de Noctua y Cooler Master equipados con ventiladores de hasta 14 cm a los que hay que sumar la altura de la base y el primer tramo de los heatpipes que llevan incorporados.

El modelo que compré fue el Hummer H-212 de Nox, que sale por unos 30 euros y es sumamente silencioso, también gracias a su ventilador cónico de 120 –> 92 mm que sopla sobre un disipador de aletas de aluminio y heatpipes de cobre a una velocidad máxima de 1600 RPM. He de decir que me ha sorprendido para bien, porque las temperaturas están a la par con el Wraith Prism pero el ruido que hace a máxima velocidad es una fracción del modelo de AMD y además en idle es prácticamente inaudible.

Como podéis ver en la imagen anterior, la disposición del conjunto disipador-ventilador es tal que el aire fresco entre por el frontal de la caja, lo recoge el ventilador, lo hace pasar por el disipador donde se calienta y a continuación sale por el ventilador trasero. Puede que algo de aire se derive hacia los dos ventiladores superiores, pero estos están principalmente para sacar el aire caliente que se acumula en la caja cuando la tarjeta gráfica está trabajando a plena potencia; si bien de esto creo que prepararé un artículo específico porque me parece un tema interesante.

Por tanto, y para resumir un poco todo lo comentado en este artículo, aunque las refrigeraciones líquidas son muy pintonas y funcionan muy bien creo que no van a conseguir barrer del mapa a las refrigeraciones por aire; ya que estas tanto por funcionalidad como sobre todo por seguridad tienen bastantes ventajas.

Review: Maglite Solitaire

A lo mejor muchos de vosotros (sobre todo los más jóvenes) dais por hecho que las linternas de bolsillo como las que suelo traer por aquí dan bastante luz y tienen una autonomía de varias horas en sus modos menos potentes; pero esta vez os voy a mostrar un modelo que apareció en 1988, que todavía está a la venta hoy en día y que viene a dar cuenta del tremendo avance que ha habido en el mundo de las linternas desde entonces. En el artículo de hoy le vamos a pegar un buen repaso a la Maglite Solitaire.

El cuerpo

El cuerpo de la Solitaire está fabricado en aluminio anodizado. Lo hoy disponible en varios colores, pero esta versión roja estaba de oferta y como en mi colección no tengo muchos modelos de este color me animé a hacerme con ella sin darle muchas vueltas. Sólo por el rato de entretenimiento de trastear con ella y escribir esta review ya mereció la pena su adquisición.

Tiene un aspecto muy estilizado, ya que acostumbrado a las proporciones de las linternas actuales que funcionan con una pila AAA, esta tiene más o menos el mismo diámetro pero es más larga. Además, el fino estriado vertical con el que cuenta tanto el cuerpo principal como la cabeza de la linterna contribuyen a esta sensación.

Las únicas inscripciones con las que cuenta la Maglite Solitaire se encuentran en la cabeza, consistiendo estas en el nombre de la marca y el modelo de linterna. No disponiendo de ningún tipo de número de serie o similar. Otra particularidad de este modelo es que se enciende aflojando su cabeza, cuando en la inmensa mayoría de linternas de esta categoría se hace apretándola. De hecho se hace raro al principio hasta que te acostumbras, porque yo al menos tiendo a apretarla para enceder y me encuentro con que la rosca ya no tiene más avance.

En la parte trasera contamos con un rebaje diseñado para colocar una anilla de llavero perfectamente realizado y con una terminación redondeada de las aristas. Además, como la base es plana podemos hacer tailstanding con ella, algo lógico por su «función vela», que consiste en que si desmontamos la cabeza, la bombilla queda pegada al cuerpo sin ningún tipo de lente o reflector con idea de que sirva como iluminación ambiental.

La pila que la alimenta se inserta por la parte trasera, desenroscando el extremo trasero (donde la anilla de llavero) lugar en el que, por cierto, va escondida una bombilla de repuesto que es otra función clásica de las Maglite en general. Tened en cuenta que es una bombilla de filamento, por lo que a diferencia de los LED puede que llegue el día que la veamos fundirse porque simplemente llegó al final de su vida útil.

Por cierto, no he comentado que tanto la rosca de la cabeza como la de la parte trasera incorporan sendas juntas tóricas de caucho que le dan estanqueidad para cumplir con la resistencia frente a salpicaduras. En cuanto a caídas, se supone que resiste impactos de hasta un metro de altura sin romperse, pero no estoy por la labor de comprobarlo.

En cuanto a dimensiones, la Solitaire tiene una longitud de 81 mm y un diámetro de 13 mm. El peso, con la pila que viene «de serie» es de 24 gramos, así que es bastante liviana para su clase. Y ya que estamos con cifras, comentar que la autonomía en su único modo de potencia disponible (2 lumens) es de unas 4 horas empleando una pila alcalina. No le metáis una batería de litio de tamaño equivalente porque sus 3 V fundirán la bombilla en menos tiempo de lo que tardáis en decir patata.

A diferencia de otras Maglite, en este caso nos encontramos ante una linterna totalmente cilíndrica; a diferencia de la mayoría de modelos del catálogo del fabricante que suelen contar con una cabeza de mayor diámetro que el cuerpo, dando la típica apariencia reconocible que todos hemos visto en las películas de policías o bomberos, que son los que sobre todo en EEUU usan las Maglite.

En el estuche se incluye, además de la propia linterna, una pila AAA para que podamos estrenarla de inmediato así como una cinta de nylon con un par de anillas de llavero en cada extremo siendo este complemento de dudosa calidad porque nada más tenerlo en las manos ya se me empezó a deshilachar. Si su fin es añadir la linterna a nuestro llavero no quiero ni pensar cómo estará al segundo día de batallar en nuestro bolsillo con llaves, monedas y demás enseres.

La luz

En esta ocasión la luz la emite una bombilla incandescente en lugar de un emisor LED, por lo que esta linterna no es comparable a ninguna otra de las que he traído hasta el momento al blog ni el intensidad ni en alcance. Su tinte es anaranjado, da apenas dos lumens y posee varios halos y coronas cuando aumbramos a una pared lisa. Eso sí, cuenta con un sistema que nos permite abrir y cerrar el haz de luz a voluntad, por si queremos alumbrar una zona más amplia o centrarnos en un punto en concreto (dentro de lo limitado que es el alcance de este modelo).

A día de hoy os pueden parecer unas prestaciones ridículas, pero es que esto es lo que teníamos antes de la aplicación del LED en linternas de pequeño tamaño. De hecho para conseguir intensidades lumínicas como las de los modelos actuales «de llavero» teníamos que irnos a los modelos de Maglite de mayor tamaño alimentados por varias pilas tipo D y que pesaban un quintal. En este sector, como veis, también se ha avanzado un montón.

Como en cualquier linterna de aquella época su funcionamiento se basa en algo tan poco eficiente como calentar mediante electricidad un hilo de material conductor hasta tal punto que se pone blanco (más allá del rojo) y eso es lo que origina la luz que produce. Os podéis imaginar que las pérdidas en forma de calor son la inmensa mayoría de la energía que le estamos metiendo a la bombilla; así que bienvenidos los LEDs y su tremenda eficiencia en este sentido.

El frontal cuenta con una lente transparente totalmente lisa y un reflector de tipo parabólico y como os decía hace unos párrafos, tiene la peculiaridad de que si desenroscamos totalmente la cabeza la linterna se convierte en una vela para crear una iluminación ambiental. Lo de llamarse vela, además, es muy acertado porque la tonalidad de la luz que arroja nos hace recordar a aquellos apagones en casa cuando éramos niños y durante unos minutos (a veces horas) teníamos que iluminarnos con velas. ¡Qué tiempos!

Las sensaciones

Caminar por casa a oscuras con la Solitaire es volver a mis inicios en el mundo de las linternas. Tenía (y todavía conservo) una muy muy similar pero de marca «nisu» con la que flipaba de pequeño. Aquello de poder ver en plena oscuridad era algo que me parecía fascinante y además así podía leer tebeos bajo las sábanas cuando mis padres me conminaban a irme a la cama siempre más pronto de lo que yo quisiera.

Ahora bien, tras haber probado muchos modelos LED de pequeño tamaño con los que incluso me podría ir al bosque por la noche y ver decenas de metros por delante de mi posición por si hay una cigüeña o un lobo feroz, jamás se me ocurriría ir con la Solitaire a esos parejes, ya que lo más probable es que acabaran encontrándome en el fondo de un barranco por haber puesto un pie donde no debía.

En la mano se me hace extraño agarrar una linterna tan alargada y, de hecho, tiendo a sujertarla como si fuera un lápiz en lugar de sostenerla entre el pulgar y el índice tal y como suelo hacer con todos los modelos de este estilo. Pero aun así el tacto es muy bueno porque los acabados son perfectos y el pulido que ha recibido hace que no notemos siquiera una línea del relieve del cuerpo diferente a otra.

Conclusión

Está claro que estamos ante un modelo que está todavía en el mercado por un mero valor sentimental más allá de cualquier practicidad. De hecho la marca comercializa la Solitarire LED que no es más que este mismo modelo pero equipado con un emisor LED que le da mucha más potencia y autonomía, pero que no tiene ese aire tan retro con su luz anaranjada y su alcance tan reducido.

Si sois unos locos de las linternas pequeñas como yo, está claro que es un modelo que debéis de tener en vuestra colección; y más si os encontráis una oferta tan tentadora como la que yo me encontré. Sin embargo, para un uso racional y práctico, no se os ocurra haceros con la Solitaire porque acabaréis aborreciéndola cuando además de apenas ver nada en plena oscuridad os quedéis sin pilas a las primeras de cambio.

De hecho es que cualquier modelo actual que podemos llevar en el llavero (como la Rovyvon Aurora A3x que llevo siempre encima) puesta al lado en su modo más bajo hace casi desaparecer la luz que emite la Solitaire como podéis apreciar en la foto que hay sobre este párrafo.

Más información

Página oficial de la Maglite Solitaire

La revolución necesaria del DLSS

Para jugar a 1080p me bastaba con la Nvidia Geforce GTX 1060 3GB de Gigabyte que conseguí poco después de terminar el montaje de mi nuevo ordenador de sobremesa; pero no es menos cierto que desde el principio tuve el ojo puesto en la gama RTX para poder subirme al carro de una tecnología que en tiempos me hubiera parecido de ciencia-ficción: el DLSS, iniciales de Deep Learning Super Sampling.

La relación resolución / potencia de cálculo

Muy a grandes rasgos y a nivel muy muy básico, una tarjeta gráfica necesita más potencia cuantos más pixels tiene que dibujar en pantalla. A una resolución de 1080p son 2073600 pixels. A 1440p serían 3686400, a K4 nos iríamos a 8294400 y, por último, a 8K serían 33177600 pixels.

Pensad ahora que esos son los pixels necesarios para dibujar un sólo frame en pantalla, y si estamos jugando algo que requiera un mínimo de acción querremos que la imagen se refresque, al menos, 60 veces cada segundo para no tener sensación de discontinuidad en la animación, que es algo que saca del juego (y de quicio) a cualquiera.

Si tomamos el ejemplo de resolución 4K, en el que decíamos que la pantalla a dicha resolución se compone de 8294400 pixels y lo multiplicamos por 60, tenemos que la tarjeta gráfica tiene que calcular cada segundo la friolera de 497664000 pixels. ¡Eso son casi quinientos millones de pixels en un sólo segundo! ¡¡¡QUINIENTOS MILLONES!!!

Obviamente, para poder mover semejante cantidad de datos la potencia bruta y la velocidad de proceso de la tarjeta gráfica han de ser tremendas, porque los pixels no son sólo cuadrados de colores sin más; sino que hasta decidir su aspecto previamente llevan una rutina de posicionado, trazado de vértices, texturizado, sombreado… Y no digamos ya si emplean técnicas de iluminación mediante raytracing ¿Empezáis a entender por qué las tarjetas de gama alta cuestan lo que cuestan, abultan lo que abultan y se calientan como se calientan?

De cualquier modo, cuando se pasó de FullHD (1080p) a la resolución de 1440p los fabricantes se dieron cuenta de que la potencia necesaria para dar el salto a cada siguiente resolución se iba incrementando a un ritmo exponencial que el desarrollo de las tecnologías gráficas clásicas no iba a ser capaz de seguir. Se imponía por tanto buscar una solución que no fuera simplemente meter potencia bruta sin más, ya que con el 4K empezando a proliferar y el 8K en el horizonte no es posible disponer de tal potencia de cálculo en una tarjeta que de momento ha de entrar en la caja de un PC.

Buscando alternativas a la potencia pura y dura

Y así es cómo en Nvidia empezaron a dar vueltas a la idea de crear unos algoritmos de escalado dinámico que permitieran renderizar internamente a una resolución inferior para en un último paso resamplear a resoluciones más altas sin apenas pérdida de calidad. Y es que ahí está la clave de todo: podéis coger el Paint, abrir una imagen de 80 x 120 pixels y subirle la resolución todo lo que queráis, pero los píxeles tendrán el tamaño de un melocotón y el resultado será, como mínimo, decepcionante.

Lo alucinante del DLSS es que realmente la pérdida de calidad es muy pequeña para lo mucho que baja la resolución internamente el algoritmo. Por ejemplo, si vamos a jugar en 4K (2160p) y elegimos el modo llamado «Calidad» internamente renderizará a 1440p. Si elegimos el modo «Equilibrado» lo hará en 1253p, mientras que el modo «Rendimiento» lo hará a 1080p y el «Rendimiento Ultra» a 720p. Y sí que es verdad que en este último caso se nota pérdida de calidad sobre todo en los detalles más finos como el pelo de Lara Croft en Shadow of Tomb Raider o las estructuras metálicas finas lejanas en Cyberpunk 2077, pero si elegimos los modos «Calidad» o «Equilibrado» realmente apenas notaremos diferencia con la resolución original y la tasa de frames por segundo se incrementará considerablemente.

Hubo una primera versión que funcionaba en juegos muy específicos y era algo limitada, pero poco a poco la tecnología ha ido evolucionando y a día de hoy estamos ya en la versión 2.0 del DLSS que ofrece mejores prestaciones y una implentación en los títulos más sencilla para los desarrolladores. Hasta tal punto es así que algunos títulos que ya empleaban la primera versión del algoritmo se han actualizado para hacer uso de la versión actual.

Los detalles de cómo funciona el DLSS son bastante complejos, ya que se basa en una red neuronal que utilizando imágenes de muy alta y baja resolución del juego que Nvidia carga en sus servidores aprende cómo rellenar los huecos y desajustes que ocurren cuando se resamplea «a las bravas» una imagen y esta información la acaban volcando en los drivers gráficos que actualizan un par de veces al mes más o menos. Obviamente no os voy a dar el tostón aquí con tantos detalles tećnicos, pero si os interesa el tema os recomiendo echar un vistazo a algunos artículos (casi siempre en inglés) donde tocan en tema de forma bastante profunda.

Está claro que este post-procesado requiere una potencia de cálculo importante en la tarjeta gráfica, pero a la vista de los resultados, las unidades que computan estos algoritmos (los llamados Tensor Cores en las dos últimas familias de tarjetas gráficas de Nvidia RTX20 y RTX30) lo hacen bastante más rápido que si desactivamos el DLSS; lo cual me parece sencillamente alucinante. Que sea más fácil para la tarjeta «inventarse» parte de los pixels de la imagen que calcularlos y que además el resultado final sea tan bueno es algo que la primera vez que vi me sorprendió muchísimo.

DLSS en pruebas sintéticas: 3DMark

Para mostraros esto de una forma gráfica (nunca mejor dicho) he pasado el test específico de DLSS que incorpora la última versión de 3D Mark, el cual dicho sea de paso, es una pasada a nivel visual. Y es que, de hecho, 3DMark siempre ha sido la referencia para los gráficos más punteros, acordándome ahora mismo de la mítica demo de la versión del año 2000 que ejecutaba en mi AMD K6-2 de la época al que le puse una Voodoo Banshee con 16 MB de VRAM.

Volviendo al test de DLSS, en primer lugar aquí tenéis el resultado de pasar el test a una resolución de 1080p con mi Nvidia Geforce RTX 2060. La primera parte es sin DLSS y la segunda aplicando el algoritmo en modo «Calidad», haciendo que apenas haya diferencias gráficas entre uno y otro test.

Como podéis ver, sin aplicar DLSS obtenemos unos 32 FPS, y con el modo «Calidad» la media es de casi 58 FPS que es  un 80% de ganancia de rendimiento (casi el doble).

En caso de aplicar el modo «Rendimiento» en la misma resolución de antes perderemos algo de calidad gráfica en algunos detalles finos pero ganaremos unos cuantos FPS.

En esta ocasión hemos pasado de los 32 FPS al no aplicar DLSS a una tasa de prácticamente 76 FPS, lo que representa una ganancia de rendimiento del 135%.

DLSS en la práctica: Shadow of Tomb Raider

Vamos a ver ahora esto mismo pero aplicado a un juego comercial como es el Shadow of Tomb Raider dado que nos permite usar todos los modos de DLSS disponibles y así como, logicamente, prescindir de él. Se ha ejecutado en el mismo equipo que la prueba del 3DMark.

En las siguientes imágenes podéis ver, de arriba a abajo, cómo influye en la tasa de cuadros por segundo no emplear DSLL o ir usando respectivamente los modos Calidad, Equilibrado, Rendimiento y Rendimiento ultra, manteniendo en todos los casos la calidad gráfica del juego en el máximo y la resolución a 1080p.

¿Veis a lo que me refiero? Emplear DLSS hace que tengamos más FPS a costa de una apenas perceptible pérdida de calidad de imagen, de modo que es un recurso valioso que nos permitirá estirar un poco más la vida útil de nuestra tarjeta gráfica antes de plantearnos dar el salto a un modelo superior porque ya no da más de si.

Ahora bien, espero que con esto los desarrolladores no empiecen a optimizar los juegos malamente pensando que si va lento con que los usuarios activen el DLSS ya está todo arreglado, porque entonces estamos en las mismas al compensar una ventaja con una desventaja. El DLSS es un inventazo, pero yo lo entiendo como un modo de que gente que no tiene una tarjeta de gama alta pueda jugar a resoluciones y/o niveles de detalle que «de serie» no podrían alcanzar.

Que este tipo de tecnologías van a ser de un uso cada vez más general lo demuestra el hecho de que recientemente AMD ha sacado su algoritmo FidelityFX Super Resolution y que Intel, que ahora se va a subir también al carro de las tarjetas gráficas con sus modelos Arc, va a emplear una tecnología similar llamada XeSS. Está claro que esta era una revolución necesaria.

Monitorización de parámetros de un PC usando un Stream Deck

Desde hace muchos muchos años soy un fan total de los instrumentos de medida; y más si estos lo hacen en tiempo real. En mi casa tengo un vatímetro, un osciloscopio, un vúmetro, un luxómetro, una cámara termográfica… Como suelo decir a mis compañeros de trabajo, que ya me conocen bastante bien: «Si mide algo es posible que lo tenga».

Midiendo, que es gerundio

El caso es que el PC tampoco se libra de mi manía de cuantificar todo, y cuando planificaba el montaje de mi nuevo ordenador de sobremesa una de las cosas que tenía en mente era contar en algún momento con la posibilidad de conocer ciertos parámetros en tiempo real mediante algún tipo de pantalla externa o similar.

Al principio usaba utilidades como Aida64 o MSI Afterburner para ver los datos en el propio monitor que me hacían el apaño perfectamente, pero cuando estás usando un videojuego a mí particularmente no me gusta tener un montón de números superpuestos en una esquina de la pantalla, de modo que luego consultaba el histórico de las gráficas generadas por Afterburner y así veía qué temperaturas máximas había alcanzado la GPU, cómo de rápido se calentaba la caja del PC con los tests de estrés del 3D Mark, qué carga máxima de proceso soportó la CPU jugando a Cyberpunk 2077, a que porcentaje de regulación de PWM llegó su ventilador, etc.

El caso es que un día me cansé de mirar gráficas porque lo que quería era un sistema externo auxiliar al que pudiera echar un vistazo en todo momento mientras jugaba a Red Dead Redeption II o echaba números en una hoja de Excel y tras buscar información vi que tenía la opción de usar una Raspberry Pi conectada en red con un S.O. especial orientado a mostrar información de otro sistema en tiempo real. Tenía el material necesario para ello, pero no era una cosa sencilla y además iba a añadir unos cuantos cables a mi escritorio.

Lo que pasa es que al final di con algo con lo que no contaba inicialmente y que al final me pareció la mejor opción con diferencia para lo que yo buscaba: un Stream Deck de ElGato.

¿Qué es un Stream Deck?

El Stream Deck es un dispositivo USB consistente en un pequeño panel con una serie de botones físicos configurables para lanzar diversas acciones en el ordenador y cuya peculiaridad es que cuenta con una pantalla OLED de 72 x 72 pixels en el interior de cada tecla.

Lo habitual es que lo usen «streamers» de modo que durante sus retransimisiones puedan cambiar de cámara, jugar con la intensidad de la luz, modificar la superposición de imágenes, meter efectos de sonido, twittear algo, silenciar el micro… Pero además tiene una característica adicional que es la que me hizo decantarme por él: se pueden desarrollar plugins externos para agregar así funcionalidades no contempladas inicialmente por el fabricante.

Cómo usar un Stream Deck para monitorizar un PC

Y así, indagando un poco más, enseguida me encontré con un plugin que enlaza con el software de monitorización para Windows llamado HWinfo y nos permite mostrar en los botones del Stream Deck aquellos parámetros que queramos consultar en todo momento, refrescándose cada segundo y generando incluso una mini-gráfica para cada uno de ellos. Algo ideal para mis propósitos de tener siempre a la vista temperaturas, velocidades de ventiladores, carga de procesador y gráfica…

Como tampoco tenía 100% claro que la cosa fuera a funcionar todo lo bien que quería, me hice con el modelo más básico de los tres que existen, el cual cuenta con sólo seis botones. Lo bueno es que cualquier botón se puede convertir en una carpeta e ir así agrupando infinidad de parámetros, pero mi primera configuracion fue la que tenéis ahí arriba consistente en visualizar carga, temperatura y velocidad de ventiladores de CPU y GPU.

Total, que instalé el Stream Deck con su software, descargué el plugin desde este enlace siguiendo las instrucciones y también la versión gratuita del programa HWinfo en su revisión 6.24 ya que las posteriores dan algunos problemas de compatibilidad con esta historia que quería montar.

Una vez lanzado el configurador del Stream Deck sólo hace falta añadir el plugin y a partir de ahí empezar a personalizar tus botones para mostrar lo que quieras, siendo enorme la variedad de tamaños de letra, icosnos, colores… Yo, por supuesto, me decanté por el azul, ya que es el predominante en el ordenador desde el que os escribo.

Cómo lo uso yo

En mi caso particular, ahora mismo lo tengo configurado de tal modo que en la «portada» veo temperaturas de CPU, GPU y caja así como las RPM de los ventiladores regulados mediante PWM de la caja del PC. En los dos botones que me quedan libres he creado dos carpetas llamadas CPU y GPU entrando a las cuales dispongo en cada caso de otros datos como porcentaje de uso, potencia consumida, velocidad de ventiladores…

Viendo ahora lo bien que funciona creo que hubiera sido mejor hacerme con el Stream Deck de 15 botones porque así tendría todo a la vista de un simple vistazo sin necesidad de crear carpetas, aunque también es verdad que a veces el exceso de información puede saturarte y no fijarte en lo verdaderamente importante.

En realidad lo que quiero tener bien presente son las temperaturas de los tres elementos principales del PC: CPU, GPU y caja. El resto de cosas como velocidad de la conexión de red, velocidad de la RAM, temperatura de los discos duros, etc a día de hoy no me preocupan demasiado; y lo bueno es que si quiero tenerlas controladoras no tengo más que configurar los botones del Stream Deck, porque anidando carpetas puedes tener todos los parámetros del sistema a apenas un par de pulsaciones.

En la imagen que hay sobre este párrafo podéis ver cómo tengo configurado el stream deck ahora mismo con esos dos botones que me llevan a una «pantalla» anidada en la que puedo ver los datos específicos de la CPU y la GPU. Lo que hay a la derecha es un termómetro-higrómetro de Xiaomi que me dice la temperatura ambiente de la habitación, ya que es algo que influye bastante en la temperatura interior de la caja del PC y, por supuesto, también lo tengo a la vista y en cuenta.

Cuanto más sencillo, mejor

Como habréis podido ver esto que hemos visto hoy es algo muy sencillo de instalar y configurar, así que si os ha llamado la atención y os gustaría poder consultar ciertos parámetros de vuestro ordenador en cualquier momento os animo a que hagáis algo así en vuestro tiempo libre porque el resultado, desde mi punto de vista, es muy molón.

¡Nos leemos!

Actualización 18-10-2021

Finalmente he dado con la configuración que más me convence para el uso que le doy al Stream Deck, así que os voy a poner a continuación las pantallas que la conforman.

Pantalla principal con los iconos de acceso a los detalles bajo la temperatura de cada uno de ellos

Parámetros de la CPU

Parámetros de la tarjeta gráfica

Parámetros varios del sistema